L'app all-in-one per gli studenti
4.8 • +11K recensioni
Più di 3 milioni di downloads
Free
Il concetto di dualismo onda-particella afferma che la luce manifesta proprietà sia corpuscolari che ondulatorie e che piccole particelle come gli elettroni si comportano sia come onde che come particelle.Questa idea fu proposta da Louis de Broglie quando illustrò i risultati di alcuni esperimenti nella sua tesi di dottorato. Le idee di de Broglie sono simili a quelle di Albert…
Explore our app and discover over 50 million learning materials for free.
Salva la spiegazione subito e leggila quando hai tempo libero.
SalvaLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenIl concetto di dualismo onda-particella afferma che la luce manifesta proprietà sia corpuscolari che ondulatorie e che piccole particelle come gli elettroni si comportano sia come onde che come particelle.
Questa idea fu proposta da Louis de Broglie quando illustrò i risultati di alcuni esperimenti nella sua tesi di dottorato. Le idee di de Broglie sono simili a quelle di Albert Einstein, ossia che la luce (che si presumeva fosse un'onda) potesse essere descritta anche come un insieme di particelle con un'energia fissa chiamati "fotoni". Vediamo insieme di cosa si tratta!
Il concetto di dualismo onda-particella della luce afferma che la luce possiede proprietà sia ondulatorie che corpuscolari.
Fino all'inizio del XX secolo si riteneva che la luce si propagasse sotto forma di onde. Solo 25 anni prima che de Broglie scoprisse che le particelle avevano un comportamento ondulatorio, Einstein aveva studiato l'effetto fotoelettrico, ipotizzando che la luce fosse composta da un piccolo flusso di particelle con un'energia pari al prodotto della sua frequenza \( \nu\) per la costante di Planck \(h\). Questo rivoluzionò la nostra comprensione della luce, che poteva quindi essere descritta anche come una particella!
Sono da notare i seguenti importanti sviluppi:
Un importante argomento contro la teoria corpuscolare era l'incapacità di spiegare la diffrazione della luce.
Fig. 1 - La diffrazione della luce non poteva essere spiegata dalla teoria corpuscolare. Secondo la teoria corpuscolare, le particelle dovrebbero passare attraverso la fenditura come un unico raggio. Invece, così come nel caso delle onde del mare che passano attraverso un'apertura, si osserva il fenomeno della diffrazione.
L’esperimento di Young realizzato nel 1801 dimostrò la natura ondulatoria della luce.
Immaginiamo di far passare la luce emessa da una sorgente attraverso due piccole fenditure. Se la dimensione d delle due fenditure è sufficientemente piccola rispetto alla lunghezza d'onda \(\lambda\) della radiazione incidente (\(d \ll \lambda\)), a grande distanza dallo schermo le fenditure si comportano come sorgenti puntiformi di luce coerente.
Quello che avviene è che le onde emesse dalle due fenditure interferiscono: su uno schermo posto dietro le due fenditure si osserveranno frange scure alternate a frange luminose. Le frange luminose sono causate dall'interferenza costruttiva mentre le frange scure dall'interferenza distruttiva. Young ottenne così un modello di interferenza, che confermò che la luce si comportava come un'onda.
Fig. 2 - Pattern di interferenza da due fenditure. L'esperimento di Young mostrò che la luce si comporta come un'onda perché, dopo aver attraversato due piccole fenditure, in alcune aree si osserva interferenza distruttiva mentre in altre si osserva interferenza costruttiva.
Il pensiero scientifico odierno, avanzato da Max Planck, Albert Einstein, Louis de Broglie, Arthur Compton, Niels Bohr, Erwin Schrödinger e altri, sostiene che le particelle hanno una natura sia ondulatoria che corpuscolare. Questo comportamento è stato osservato non solo nelle particelle elementari, ma anche in quelle complesse, come gli atomi e le molecole.
Un corpo nero è una sostanza ideale che assorbe tutta la radiazione incidente e riemette tutta l'energia assorbita. Nel 1900 Max Planck formulò quella che è nota come legge di Planck della radiazione di corpo nero per spiegare lo spettro di emissione di un corpo nero cui la fisica classica non riusciva a dare accettabili interpretazioni.
Planck ipotizzò che gli atomi potessero assorbire o emettere energia in pacchetti discreti proporzionali alla loro frequenza 𝜈 e che quindi l’energia potesse assumere solo valori del tipo:
\[E = n \, h \, \nu\]
con \(n\) intero positivo.
Partendo da questa ipotesi, Plank ricavò la densità di energia della radiazione di corpo nero in funzione della sua frequenza:
\[E (\nu) = \frac{2 \, \pi \, h \, \nu^3}{c^2} \, \frac{1}{e^{h\nu / kT}-1}\,,\]
dove \(h\) è la costante di Planck (\(h = 6{,}6207015 \times 10^{-34} \, \mathrm{J} \, \mathrm{s}\)), \(c\) è la velocità della luce (\(c=299792458 \, \mathrm{m}\, \mathrm{s^{-1}}\)), \(k\) è la costante di Boltzmann (\(k= 1{,}38064852 \times 10^{-23} \, \mathrm{J} \, \mathrm{K^{-1}}\)) e \(T\) è la temperatura assoluta.
La maggior parte della radiazione emessa da un corpo nero a temperature fino a diverse centinaia di gradi si trova nella regione infrarossa dello spettro elettromagnetico. All'aumentare della temperatura, l'energia totale irradiata aumenta e il picco di intensità dello spettro emesso si sposta verso lunghezze d'onda più corte, con conseguente emissione di una maggiore quantità di luce visibile.
Nel 1905, Albert Einstein prese il modello del corpo nero di Plank e lo utilizzò per sviluppare la sua soluzione a un altro enorme problema: l'effetto fotoelettrico. Questo fenomeno è caratterizzato dall’emissione di elettroni quando un metallo viene colpito da radiazione elettromagnetica.
Einstein fornì una spiegazione dell'effetto fotoelettrico postulando l'esistenza dei fotoni, ciascuno dei quali trasporta un'energia proporzionale alla frequenza: \(E=h\nu\).
Un fotone è un "quanto" di luce che trasporta un'energia pari a: \(E=h\nu\), dove \( \nu\) è la frequenza della radiazione e \(h\) è la costante di Plank.
Quando un fotone interagisce con un elettrone, se l'energia del primo è maggiore o uguale al lavoro di estrazione \(L_e\), questa è sufficiente a rompere il legame elettrico che tiene l'elettrone legato all'atomo. Quindi, l'elettrone può essere espulso dal metallo solo se \(L_e \geq h \, \nu\). Questo valore determina la soglia minima di estrazione per ogni metallo.
Nel 1924 Louis-Victor de Broglie formulò quella che divenne nota come ipotesi di de Broglie. Egli diede un grande contributo alla fisica quantistica, affermando che anche le particelle come gli elettroni possono mostrare proprietà ondulatorie. Egli estese quindi il dualismo-onda particella introdotto da Einstein nel caso della luce alla materia. L’ipotesi di de Broglie è espressa dalla seguente relazione:
\[\lambda = \frac{h}{m \, v}\]
dove \(\lambda\) è la lunghezza d'onda della particella, \(h\) è la costante di Planck, \(m\) è la massa della particella e \(v\) la sua velocità.
Nel 1927 Werner Heisenberg elaborò il principio di indeterminazione, un'idea centrale della meccanica quantistica. Secondo questo principio, non è possibile conoscere l'esatta posizione e quantità di moto di una particella allo stesso tempo.
Indicando con \(\Delta x\) e \(\Delta p\), rispettivamente, l’incertezza sulla posizione e sulla quantità di moto di una particella, vale la seguente relazione:
\[\Delta x \, \Delta p \geq \frac{h}{4\pi}\,.\]
Abbiamo quindi visto che la luce non si comporta solo come un'onda perché può anche essere considerata come un insieme di piccoli pacchetti di energia noti come fotoni. I fotoni non hanno massa e trasportano una determinata quantità di energia che è direttamente proporzionale alla frequenza della radiazione e inversamente proporzionale alla lunghezza d'onda.
Per calcolare l'energia di un fotone, si utilizzano le seguenti equazioni:
\[E = h \, \nu \,,\]
dove \(E\) è l'energia del fotone in joule (\(\mathrm{J}\)), \(h\) è la costante di Planck: \(6{,}62607015 \times 10^{-34}\) in joule-secondo (\(\mathrm{J} \, \mathrm{s}\)), e \(\nu\) è la frequenza in hertz (\( \mathrm{Hz} \)).
Oppure:
\[E = \frac{h \, c}{\lambda}\]
dove \(\lambda\) è la lunghezza d'onda del fotone (\(\mathrm{m}\)).
Il dualismo onda-particella afferma che la materia e la radiazione elettromagnetica manifestano proprietà sia corpuscolari che ondulatorie.
De Broglie diede un grande contributo alla fisica quantistica, affermando che anche le particelle come gli elettroni possono mostrare proprietà ondulatorie
Le particelle di luce sono dette fotoni.
Per fotone si intende un quanto di luce che trasporta un'energia pari a: E = h 𝜈, dove 𝜈 è la frequenza della radiazione e h è la costante di Plank.
How would you like to learn this content?
How would you like to learn this content?
Free fisica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Iscriviti per sottolineare e prendere appunti. É tutto gratis.
Salva le spiegazioni nel tuo spazio personalizzato e accedile ovunque e in qualsiasi momento
Iscriviti con l'e-mail Iscriviti con AppleIscrivendoti accetti Termini e Condizioni e Informativa sulla Privacy di StudySmarter.
Hai già un account? Login