L'app all-in-one per gli studenti
4.8 • +11K recensioni
Più di 3 milioni di downloads
Free
Quando arrivi a studiare i logaritmi di solito pensi di aver toccato il limite della massima difficoltà in matematica. Poi cominci a vedere la definizione di funzione, il dominio, il codominio, e quel limite di difficoltà si sposta. Ma è ancora più complicato studiare cosa succede quando ti avvicini al limite del dominio della funzione: per risolvere questo problema è…
Explore our app and discover over 50 million learning materials for free.
Salva la spiegazione subito e leggila quando hai tempo libero.
SalvaLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenQuando arrivi a studiare i logaritmi di solito pensi di aver toccato il limite della massima difficoltà in matematica. Poi cominci a vedere la definizione di funzione, il dominio, il codominio, e quel limite di difficoltà si sposta. Ma è ancora più complicato studiare cosa succede quando ti avvicini al limite del dominio della funzione: per risolvere questo problema è stato inventato il concetto di... limite.
I limiti vengono definiti in un modo piuttosto complicato e formale. Prima di vedere la definizione conviene farsi un'idea del problema da affrontare.
Guarda i grafici delle funzioni seguenti.
\[ f(x) = \frac{x^{2}-4}{x-2}, \; \; g(x) = \frac{|x-2|}{x-2}, \; \; h(x) = \frac{1}{(x-2)^{2}} \]
Ci interessa in particolare controllare cosa succede nei tre casi vicino al punto \( x_0=2 \).
Figura 1. Tre funzioni non definite nel punto \(x=2\) hanno comportamenti molto diversi tra loro.
Perché osservare proprio il punto \(x_0=2\)? Beh, perché se c'è una cosa che queste funzioni hanno in comune, è che nessuna delle tre è definita in questo punto! Come vedi, ci sono tre comportamenti molto diversi: nel primo caso si vede semplicemente un "buco" nel grafico. Potresti dire che, avvicinandoti sempre di più al punto \(x_0=2\), al limite il valore della funzione è 4.
Nel secondo caso i valori della funzione sono solo due: vicino al punto \(x_0=2\) c'è un "salto". Se mi avvicino a \(x_0=2\) da destra, il valore della funzione resta \(1\), mentre a sinistra è \(-1\).
Infine, nel terzo caso, la linea del grafico si avvicina alla retta verticale di equazione \(x=2\) senza toccarla mai. Stavolta, man mano che ti avvicini a \(2\) sull'asse \(x\), il limite che la funzione cerca di raggiungere su \(f(x)\) è \(+\infty\)!
Questi esempi suggeriscono che non sia facile capire cosa fa una funzione vicino a un punto dove non è definita: ci vuole qualche strumento matematico per capire cosa succede. L'idea è proprio questa: avvicinarsi piano piano a un punto e vedere cosa succede alla funzione al limite.
Nota anche che le funzioni dell'esempio non sono definite nel punto \(x_0=2\): tutte e tre, però, sono definite in punti molto vicini a questo. D'altra parte, non avrebbe molto senso, ad esempio, chiedersi cosa succede a \(\sqrt{x}\) vicino a \(-10\): non si cerca mai il limite di una funzione in un punto lontano dal suo dominio.
I limiti si cercano sempre in punti "molto vicini" al dominio della funzione: questi si definiscono punti di accumulazione. Per dirlo in modo più formale, bisogna esprimere "essere molto vicini a un punto \(x_0\)" in matematichese. L'idea è fissare un numero piccolo, che si indica con \(\delta\) (questa lettera si legge "delta"): sono "molto vicino al punto" se mi trovo a una distanza minore di \(\delta\) dal punto. In altre parole, una \(x\) è "molto vicina" a \(x_0\) se \( |x_0-x| < \delta\).
Il valore assoluto della differenza \(|a-b|\) indica la distanza tra due numeri \(a\) e \(b\) sulla retta reale.
Si dice che \(x_0\) è un punto di accumulazione per \(A\subseteq \mathbb{R} \) se esistono punti di \(A\) arbitrariamente vicini ad \(x_0\); più formalmente, se, per ogni \(\delta>0\) esiste \(x \in A\) tale che \(|x-x_0| < \delta\).
Cominciando dalla funzione \(f(x)\), cerchiamo di definire cosa vuol dire questo limite della funzione nel punto \(x_0=2\). Forse la cosa più spontanea è calcolare una tabella di valori: scegliendo varie \(x\) con un valore vicino a \(x_0=2\) si calcola il valore corrispondente di \(f(x)\).
\(x\) | \(f(x) \) |
1,9 | 3,9 |
1,95 | 3,95 |
1,98 | 3,98 |
2,02 | 4,02 |
2,05 | 4,05 |
2,1 | 4,1 |
Tabella 1. Valori di \(f(x)\) per scelte di \(x\) vicine a \(2\).
Più il valore di \(x\) è vicino a \(2\), e più il valore di \(f(x)\) è vicino a \(4\). Bene: allora potrei dire che il limite della funzione in un punto vale \(L\) (in questo caso, \(L=4\) se, ogni volta che \(x\) è "molto vicino" a \(x_0\), i valori di \(f\) risultano "molto vicini" a \(L\).
Pensa a cosa succede alla funzione \(f\) nell'esempio precedente: se prendi una \(x\) "molto vicina" al punto \(x_0=2\) fissato, il valore \(f(x)\) corrispondente sarà "molto vicino" a \(4\). "Molto vicino" si dovrà dire nello stesso modo: ovvero, \(f(x)\) dovrà trovarsi a una distanza "piccola" , da \(4\), diciamo al massimo \(\varepsilon\) (questa lettera si legge "epsilon").
Fissato \(A \subseteq \mathbb{R}\), una funzione \(f : A \rightarrow \mathbb{R}\), un numero \(x_0 \in \mathbb{R}\) che sia punto di accumulazione di \(A\) e un valore \(L \in \mathbb{R}\).
Si dice che \(L\) è il limite di \(f\) per \(x\) che tende a \(x_0\), e si scrive
\[ \lim_{x\rightarrow x_0} f(x) = L\]
se, per ogni \(\varepsilon > 0\) esiste \(\delta>0\) tale che
\[\text{per ogni }\; x \in A \text{ con } |x_0-x| < \delta \tag{1}\] si ha \[ L-\varepsilon < f(x)< L+\varepsilon \tag{2}\]
Vediamo come La prima cosa che fa la definizione è precisare i termini: hai una funzione definita su un sottoinsieme di \(\mathbb{R}\). Poi si inventa una scrittura per indicare che un numero reale \(L\) è il limite di una funzione in un punto \(x_0\). Nell'esempio della funzione \(f(x) = \frac{x^{2}-4}{x-2}\), si aveva \(L = 4\) e \(x_0=2\).
La frase successiva vuol dire questo: tu scegli una distanza massima \(\varepsilon\) per i valori \(f(x)\) della funzione. Nell'immagine vedi una possibile scelta di \(\varepsilon\) nel caso della funzione \(f(x)\): l'obiettivo è definire una zona abbastanza vicina a \(x_0\) perché tutti i suoi punti vengano portati dalla funzione nell'intervallo evidenziato. Questo intervallo è precisamente \((L-\varepsilon, L+\varepsilon)\) che nel nostro caso è \((4-\varepsilon, 4+\varepsilon)\).
Figura 2. I valori di \(y\) nella zona evidenziata sono distanti da \(y=4\) meno del valore \(\varepsilon\).
Più precisamente, serve una distanza \(\delta\) con questa caratteristica: tutti i punti di \(A\) che sono lontani al massimo \(\delta\) da \(x_0\), hanno i valori \(f(x)\) "vicini" a \(L\). Qui "vicini" indica precisamente "a distanza minore di \(\varepsilon\)". Nel caso in esempio, tutte le \(x\) distanti meno di \(\delta\) da \(2\) devono portare a corrispondenti \(f(x)\) vicine a \(4\) (la distanza dev'essere minore di \(\varepsilon\)). Si tratta della zona evidenziata lungo l'asse \(x\) sul disegno: tutte le \(x\) comprese tra \(2-\delta\) e \(2+\delta\). Espresso in simboli: \(2-\delta < x < 2+\delta\), che corrisponde all'intervallo aperto \( (2-\delta, 2+\delta) \).
Figura 3. Fissato \(\varepsilon\), c'è un \(\delta\) per cui tutti i valori "vicini più di \(\delta\)" a \(2\) vengono portati dalla funzione a una distanza massima di \(\varepsilon\) dal limite \(4\).
L'idea ora è che per ogni scelta di \(\varepsilon\) bisogna controllare che esista un \(\delta\) come sopra. Insomma, dovresti fare infiniti controlli. Per fortuna, alcuni risultati teorici aiutano nel risolvere gli esercizi!
x
La definizione appena vista non descrive cosa succede alla funzione \(h(x)\) dell'esempio. In quel caso, man mano che ci si avvicina al valore \(x_0=2\) la funzione prende valori sempre più grandi. Traducendo in matematichese: se fisso un valore \(M\) grande quanto voglio, allora potrò trovare una distanza \(\delta\) per cui tutti gli \(x\) "vicini" prendono un valore maggiore di \(M\).
Fissato \(A \subseteq \mathbb{R}\), una funzione \(f : A \rightarrow \mathbb{R}\) e un numero \(x_0 \in \mathbb{R}\) che sia punto di accumulazione di \(A\).
Si dice che il limite di \(f\) per \(x\) che tende a \(x_0\) è infinito, e si scrive
\[ \lim_{x\rightarrow x_0} f(x) = + \infty\]
se, per ogni \(M > 0\) esiste \(\delta>0\) tale che
\[\text{per ogni }\; x \in A \text{ con } |x_0-x| < \delta \; \text{ si ha } \; f(x) > M\]
Si può ripetere la stessa cosa per il valore \(- \infty\):
Fissato \(A \subseteq \mathbb{R}\), una funzione \(f : A \rightarrow \mathbb{R}\) e un numero \(x_0 \in \mathbb{R}\) che sia punto di accumulazione di \(A\).
Si dice che il limite di \(f\) per \(x\) che tende a \(x_0\) è meno infinito, e si scrive
\[ \lim_{x\rightarrow x_0} f(x) = - \infty\]
se, per ogni \(M > 0\) esiste \(\delta>0\) tale che
\[\text{per ogni }\; x \in A \text{ con } |x_0-x| < \delta \; \text{ si ha } \; f(x) < M\]
Ricorda che \(+\infty, -\infty\) non sono numeri reali: nell'ambito dei limiti, significano che la funzione arriva ad assumere valori più grandi (o più piccoli, nel caso di \(-\infty\) di qualunque numero reale. Un po' quello che, nell'esempio, succedeva sulla funzione \(h(x)\). La funzione si avvicina sempre di più alla retta \(x=2\) senza toccarla mai: in una situazione di questo tipo si dice che la retta è un asintoto verticale per la funzione.
Figura 4. Limite infinito in corrispondenza del punto \(x_0 =2\).
Non è detto che i limiti esistano sempre. Hai visto un esempio con la funzione \(g(x) = \frac{|x-2|}{x-2}\) vicino al punto \(x_0=2\). In questo caso, è come se la funzione avesse due limiti diversi che non vanno d'accordo tra loro: c'è un comportamento diverso a destra di \(2\) e uno a sinistra di \(2\).
Fissato \(A \subseteq \mathbb{R}\), una funzione \(f : A \rightarrow \mathbb{R}\), un numero \(x_0 \in \mathbb{R}\) che sia punto di accumulazione di \(A\) e \(L \in \mathbb{R}\).
A volte si specifica anche che "\(x\) tende a \(x_0\) da destra" o "da sinistra" per sottolineare il concetto.
Figura 5. Nel punto \(x_0=2\) la funzione ha un limite destro e sinistro distinti tra loro.
Distinguere limite destro e sinistro è utile in molti casi: a volte, come nel caso di \(g(x)\), risultano diversi tra loro. Oppure può capitare di avere una funzione definita a tratti, con due leggi diverse a destra e sinistra di un punto: in questo caso devi fare due calcoli diversi.
Nota una cosa: se in un punto esiste un limite, allora esistono anche quello destro e sinistro, e sono uguali. È vero anche il viceversa: se esistono il limite destro e sinistro, e sono uguali, allora esiste anche il limite! Vedrai meglio questo aspetto studiando i teoremi sui limiti.
Osserva nuovamente il grafico della funzione \(h(x) = \frac{1}{(x-2)^2}\) in figura 4. Si tratta di una funzione sempre positiva: il suo grafico tende ad avvicinarsi alla retta verticale \(x=2\) senza toccarlo mai. Succede una cosa simile, però, anche con l'asse delle \(x\): la funzione tende ad avvicinarsi all'asse senza toccarlo. Dato che il numeratore è \(1\), infatti, la funzione non si annulla mai.
Il concetto di limite descrive anche questo comportamento: l'idea è che il limite di \(h\) per \(x\) che tende a infinito è vale zero. Come puoi immaginare, ci vuole una definizione specifica: un caso per più infinito \(+\infty\), e un altro caso per meno infinito \(-\infty\).
Si dice che la funzione \(f(x)\) ha un limite \(L\) per \(x\) che tende a \(+\infty\), e si scrive:
\[ \lim_{x \rightarrow + \infty } f(x) =L \] se, per ogni \(\varepsilon> 0\) esiste un numero \(N>0\) tale che per ogni \(x>N\) si ha \(|f(x)-L| < \varepsilon\).
In modo simile, si dice che \(f(x)\) ha limite \(L\) per \(x\) che tende a \(- \infty\), e si scrive:
\[ \lim_{x \rightarrow - \infty } f(x) =L \] se, per ogni \(\varepsilon> 0\) esiste un numero \(N>0\) tale che per ogni \(x < - N\) si ha \(|f(x)-L| < \varepsilon\).
C'è ancora un ultimo caso: quello che descrive il comportamento della funzione \(f(x\) quando \(x\) tende a \(\pm \infty\). In questo caso, il valore di \(x\) continua a crescere per le \(x\) positive e a diminuire per quelle negative: puoi immaginare che i valori di questi due limiti saranno rispettivamente \(+\infty\) e \(-\infty\)!
Data una funzione \(f(x)\), si dice che ha un limite infinito per \(x\) che tende a infinito in uno dei seguenti casi:
Finora hai visto come si definiscono i limiti nei vari casi. Le funzioni viste nell'esempio iniziale sono state utili per capire il significato dei concetti, ma non c'è ancora nessuna dimostrazione del fatto che i limiti sono davvero quelli. Calcolare i limiti usando la definizione è noioso, ma utile per capirne meglio il significato.
Dimostra che risulta: \[\lim_{x \rightarrow 2} \frac{x^{2}-4}{x-2} =4.\]
Si tratta della funzione \(f(x)\) nell'esempio iniziale: seguendo la definizione, bisogna mostrare che per ogni scelta di \(\varepsilon > 0\) si trova un \(\delta > 0\) per cui, scelto qualunque \(x\) con \(|x-2|<\delta\) allora \(|f(x)-4| < \varepsilon\).
Conviene partire proprio da questa disuguaglianza: fissato un certo \(\varepsilon > 0\), devi dimostrare che
\[ \left| \frac{x^{2}-4}{x-2} - 4 \right| < \varepsilon\]
L'idea è che questa disequazione sarà valida solo per certi valori di \(x\): trovare quali sono questi valori ti permetterà di trovare \(\delta\). Metti al minimo comune denominatore e svolgi i calcoli:
\begin{align}\left| \frac{(x^2-4) - 4(x-2)}{x-2} \right| < \varepsilon \\ \left| \frac{x^{2} - 4 - 4x+8}{x-2} \right| < \varepsilon \\ \left| \frac{x^{2} - 4x+4}{x-2} \right| < \varepsilon \end{align}
Nota che al denominatore c'è il quadrato di un binomio. Puoi scomporlo e poi semplificare:\begin{align}\left| \frac{(x-2)^{\cancel 2}}{\cancel{ x-2}} \right| < \varepsilon \\ \left| x-2 \right| < \varepsilon \tag{a} \ \end{align} Ora devi trovare una distanza \(\delta\): l'obiettivo è che se \(|x-2| < \delta\), la disuguaglianza \((\mathrm{a})\) risulti vera. Va bene qualunque \(\delta \leq \varepsilon\): anche se scegli \(\delta=\varepsilon\) la disuguaglianza risulta sempre vera.
Puoi controllarlo sostituendo a \(\varepsilon\) qualsiasi valore positivo: ad esempio, se \(\varepsilon = 0,1\), allora \(x\) dovrà essere scelta tra \(2 - 0,1 =1,9\) e \(2+0,1 =2,1\), cioè nell'intervallo \((1,9 \, ;\, 2,1)\). Per qualunque \(x\) in questo intervallo si ha\[\left| x-2 \right| < 0,1 = \varepsilon\] Se non ti convince, prova a sostituire dei valori a \(x\): ad esempio, se scegli \(x=1,95\) hai che \[|x-2|=|1,95-2|=0,05 < 0,1 =\varepsilon\]
A questo punto è il turno di \(h(x)\).
Dimostra che risulta \[ \lim_{x \rightarrow \infty } \frac{1}{(x-2)^{2}} =0\]
In questo esercizio hai un limite per \(x\) che tende a infinito: nota che non compare né il più né il meno. Questo significa che entrambi i limiti, per \(x\) che tende a \(+ \infty\) e \(x\) che tende a \(- \infty\), hanno lo stesso valore. Per fare questo esercizio bisogna mostrare che, fissato qualunque numero piccolo \(\varepsilon\), si può sempre scegliere un numero \(N\) in modo che, se \(x > N\), si abbia \[\left|\frac{1}{(x-2)^{2}} - 0 \right| < \varepsilon \tag{1}\]
Come nel caso precedente, ti conviene lavorare sulla disuguaglianza appena vista: dato che il limite è \(0\), devi fare in modo che
\[\left|\frac{1}{(x-2)^{2}} \right| < \varepsilon \]
In questo caso, \(\varepsilon\) è fissato e devi trovare \(x\). Come prima cosa, nota che il valore assoluto si può togliere: il termine a sinistra è sempre positivo. Inoltre puoi portare tutto allo stesso denominatore ed eliminarlo.
\[\frac{1}{\cancel {(x-2)^{2}}} < \frac{\varepsilon (x-2)^{2}}{\cancel {(x-2)^{2}}} \]
Bene: ora dividi per \(\varepsilon\) in modo da isolare la \(x\) a destra e sviluppa il quadrato.
\begin{align}\frac{1}{\varepsilon}< (x-2)^2 \\ \frac{1}{\varepsilon}< x^2 -4x+4 \end{align}
A questo punto conviene portare tutto dallo stesso lato e ribaltare la disuguaglianza.
\begin{align} 0 < x^2 -4x+4 - \frac{1}{\varepsilon} \\ x^2 -4x+4 - \frac{1}{\varepsilon}> 0 \tag{2}\end{align}
Ora hai un'equazione di secondo grado in \(x\), che si risolve come sempre.
\begin{align}x_{1,2} & = \frac{4\pm \sqrt{16-4\left(4- \frac{1}{\varepsilon}\right)}}{2} =\frac{4\pm \sqrt{16-16+ \frac{4}{\varepsilon}}}{2} \\ & = \frac{1}{2} \left( 4 \pm \sqrt{\frac{4}{\varepsilon}} \right) = \frac{4}{2} \pm \frac{2}{2\sqrt{\varepsilon}} = 2 \pm \frac{1}{\sqrt{\varepsilon}} \end{align}
Le due soluzioni sono \(x_1=2 + \frac{1}{\sqrt{\varepsilon}}\) e \(x_2=2 - \frac{1}{\sqrt{\varepsilon}}\). La disequazione \((2)\) è verificata per tutti i valori esterni alle due soluzioni, ovvero per \(x < x_2\) o \(x >x_1\).
Per capire come interpretare questo risultato nel contesto del limite, è meglio dare un valore alle soluzioni: scegli un valore piccolo a piacere per il numero \(\varepsilon\) e sostituiscilo. Ad esempio, se scelgo \(\varepsilon = \frac{1}{100}\), ottengo \begin{align}x_1&=2 + \frac{1}{\sqrt{\frac{1}{100}}} = 2 + \frac{1}{\frac{1}{10}} = 2+10=12 \\ x_2& = 2- \frac{1}{\sqrt{\frac{1}{100}}} = 2-10=-8\end{align}
Questo significa che: fissato \(\varepsilon =\frac{1}{100}\), la disequazione di partenza (1) è verificata per ogni \(x\) più grande di 12 e per ogni \(x\) più piccolo di \(-8\).
Per concludere: per ogni fissato \(\varepsilon\), puoi risolvere la disequazione (1) e ottenere due valori di \(x_1\) e \(x_2\). Questi sono i \(\delta\) che ti servono nella definizione di limite: \(x_1\), che risulta positivo, è il valore di \(\delta\) che ti permette di dimostrare il limite per \(x \rightarrow + \infty \). L'altro valore \(x_2\), quello negativo, riguarda invece il limite per \(x \rightarrow - \infty\).
Ora è il turno della funzione \(g(x)\). In questo caso il limite non esiste: vediamo come dimostrare che è così!
Dimostra che non esiste il limite \(lim_{x \rightarrow 2} \frac{|x-2|}{x-2}\).
Dal grafico di questa funzione in figura 5 vedi bene che la funzione assegna il valore \(-1\) alle \(x\) minori di 2 e il valore (1\) alle \(x\) maggior di 2. Per cercare un limite dovresti avere un valore \(L\) per cui la distanza \(|g(x)-L|\) risulta piccola sia per \(x\) maggiore che per \(x\) minore di 2. Ovvero, fissato un \(\varepsilon\) piccolo dovresti poter trovare un \(\delta\) tale che
\[ |g(2-\delta)| < \varepsilon , \;\; |g(2 + \delta) -L| < \varepsilon \]
Ora, \(|g(2-\delta) -L| = |L- g(2-\delta)|\): all'interno del modulo puoi sempre cambiare il segno. Le due disuguaglianze si possono sommare, e puoi sostituire i valori di \(g(x)\) nei due punti, ottenendo:
\begin{align} |L - g(2-\delta)| + |g(2 + \delta) -L| < 2 \varepsilon \\ |L - (-1)| + |1 -L| < 2 \varepsilon \\ |L +1| + |1 -L| < 2 \varepsilon \end{align}
Nel modulo a sinistra puoi usare la disuguaglianza triangolare: la somma dei moduli di due valori è sempre maggiore del modulo della somma.
\[ | L +1+1-L| < |L +1| + |1-L| \]
Ora mettendo assieme queste ultime due disuguaglianze ottieni:
\[ | L +2 -L| < 2 \varepsilon \]
Nel membro sinistro puoi eliminare \(L\) e \(-L\) e sostituire i valori di \(g\):
\begin{align} 2 < 2 \varepsilon \\ 1 < \varepsilon \end{align}
Quello che hai ricavato ti dice la distanza \(|g(x)-L|\) non si può rendere più piccola di \(\varepsilon\) se questo numero è minore e uguale a \(1\): cioè, che qualunque "candidato limite" non potrà essere abbastanza vicino ai valori della funzione sia a destra che a sinistra. Guardando il grafico risulta ovvio: meglio così, perché significa che tutte queste complicate definizioni di limite si comportano come dovrebbero seguendo l'intuizione.
Come ultimo esempio, un caso davvero patologico: alcune funzioni non hanno limite in modo molto più complicato di altre!
Considera la funzione \(\sin \left(\frac{1}{x} \right)\) nella zona attorno a \(0\) . Andando a studiare cosa succede per \(x \rightarrow 0\) ci si rende conto subito che il limite non esiste: una prima idea è fare una tabella di valori. In questo caso, i valori comodi sono quelli del tipo \(x=\frac{2}{k\pi}\): questo perché \(\frac{1}{x} = \frac{k\pi}{2}\), e quindi il seno risulta intero. Allo stesso tempo, se aumenti il valore di \(k\), il numero \(x=\frac{2}{k\pi}\) risulta sempre più piccolo e sempre più vicino a \(0\).
\(x\) | \(f(x)\) |
\(\frac{2}{\pi}\) | \(\sin \left(\frac{1}{x} \right) = \sin \frac{\pi}{2} = 1\) |
\(\frac{2}{2\pi} \) | \(\sin \left(\frac{1}{x} \right) = \sin \pi = 0\) |
\(\frac{2}{3\pi}\) | \(\sin \left(\frac{1}{x} \right) = \sin \frac{3\pi}{2}= -1\) |
\(\frac{2}{4\pi}\) | \(\sin \left(\frac{1}{x} \right) = \sin 2 \pi = 0\) |
\(\frac{2}{5\pi}\) | \(\sin \left(\frac{1}{x} \right) = \sin \frac{5\pi}{2} = 1\) |
\(\frac{2}{6\pi}\) | \(\sin \left(\frac{1}{x} \right) = \sin 3 \pi = 0\) |
\(\frac{2}{7\pi}\) | \(\sin \left(\frac{1}{x} \right) = \sin \frac{7\pi}{2}= -1\) |
Tabella 2. Valori della funzione \(\sin \left(\frac{1}{x} \right)\) per \(x\) che si avvicina a \(0\).
Come vedi dalla tabella, man mano che ci si avvicina a \(0\) i valori della funzione continuano a cambiare, oscillando tra \(-1\) e \(1\). Se usi un'app per stampare un grafico, noterai una specie di barra verticale nella zona intorno a \(0\): la funzione oscilla così tanto che non si riescono nemmeno a stampare in modo distinto le gobbe della curva!
Questo non è una dimostrazione del fatto che il limite non ci sia: ma nella maggior parte dei casi non dovrai fare dimostrazioni rigorose come quelle degli esempi precedenti. È importante, quindi, riuscire a scrivere dimostrazioni precise, ma è più importante farsi un'idea del comportamento della funzione.
Quando si dice che una funzione ha un certo limite L vicino a un certo punto x0 (o a ∞) , il significato intuitivo è che i valori della funzione tendono ad avvicinarsi a L mano a mano che ci si avvicina a x0 (oppure a ∞). Per calcolare i limiti ci sono vari modi: uno è cercare di applicare la definizione formale. In genere però si cerca di ricondursi a limiti già noti o usare tecniche particolari a seconda del tipo di funzione.
Ci sono parecchi tipi di limiti, ognuno con la sua definizione:
How would you like to learn this content?
How would you like to learn this content?
Free matematica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Iscriviti per sottolineare e prendere appunti. É tutto gratis.
Salva le spiegazioni nel tuo spazio personalizzato e accedile ovunque e in qualsiasi momento
Iscriviti con l'e-mail Iscriviti con AppleIscrivendoti accetti Termini e Condizioni e Informativa sulla Privacy di StudySmarter.
Hai già un account? Login