L'app all-in-one per gli studenti
4.8 • +11K recensioni
Più di 3 milioni di downloads
Free
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenTutte le operazioni hanno delle proprietà: questo vale anche per le potenze. Le proprietà delle potenze permettono di calcolarle in modo più semplice. Sono importantissime con monomi, polinomi e funzioni: è una buona idea fare esercizi finché non senti di averle imparate!
Prima di cominciare, è meglio ripassare la definizione di potenza che si dà alle scuole secondarie di primo grado.
Dato un numero naturale \(n\) e un numero reale \(a\), la potenza con base \(a\) ed esponente \(n\) è una moltiplicazione ripetuta di \(a\) per sé stesso, in cui \(a\) compare \(n\) volte.
\[a^n = \underbrace{a \cdot a \cdots a}_{n \text{ volte }} \]
Si specifica che:
\(0^0\), invece, non è definito: è un'espressione senza significato.
Ad esempio:\[3^2 = 3 \cdot 3 = 9, \; 5^3=5\cdot5\cdot5=125,\]\[ (-2)^4=(-2)\cdot(-2)\cdot(-2)\cdot(-2) =16.\] Fai attenzione: l'esponente conta il numero di volte in cui si ripete la base, non il segno di moltiplicazione!
Le proprietà delle potenze sono delle scorciatoie che accorciano i conti quando si verificano certe condizioni, e riguardano il comportamento delle potenze con prodotti e divisioni. Senza proprietà delle potenze i calcoli sarebbero molto più lunghi e complicati!
Il prodotto di due potenze con la stessa base \(a\) è la potenza che ha come base la stessa base e come esponente la somma degli esponenti. \[a^n \cdot a^m = a^{n+m}\]
Se provi a fare qualche calcolo sostituendo dei numeri alle lettere ti accorgi subito che ha senso: \[3^4\cdot 3^2 = (3\cdot 3\cdot 3\cdot 3) \cdot (3\cdot 3) = 3^6=3^{4+2}\]
Il quoziente di due potenze con la stessa base \(a\) è la potenza che ha come base la stessa base e come esponente la differenza degli esponenti. \[a^n : a^m = a^{n-m}\]
Anche in questo caso, ci si rende conto che la proprietà è vera con qualche esempio: è più facile riscrivendo la divisione come una frazione.
\[3^4: 3^2 = \frac{3\cdot 3\cdot \cancel 3\cdot \cancel 3}{\cancel 3\cdot \cancel3} = 3^2 = 3^{4-2}\]
Se si eleva una potenza a un altro esponente, il risultato è una potenza che ha come base la stessa base della potenza originale e come esponente il prodotto degli esponenti.
\[\left(a^n\right)^m=a^{n\cdot m}\]
Questa proprietà sembra un po' più strana delle altre: conviene fare un esempio pratico anche in questo caso e capire che senso ha passaggio per passaggio.
Calcola \((3^4)^2\).
Quando devi moltiplicare o dividere potenze che hanno lo stesso esponente, ma basi diverse, le proprietà appena viste non valgono. Si applica, invece, una proprietà distributiva delle potenze rispetto alla moltiplicazione e alla divisione: l'esponente che riguarda un prodotto (o un quoziente) può essere distribuito sui termini che compaiono nel prodotto (o nel quoziente). Vediamo le formule per i due casi: potenze e moltiplicazione, e potenze e divisione.
La proprietà distributiva riguarda sempre due operazioni: descrive il modo in cui una si distribuisce rispetto all'altra. Una sola operazione non può avere la proprietà distributiva.
Il prodotto di due potenze con lo stesso esponente \(n\) è la potenza che ha come base il prodotto delle basi e come esponente lo stesso esponente. \[a^n \cdot b^n = (a\cdot b)^{n}\]
Come sopra, è bene fare un esempio pratico per rendersi conto del perché la proprietà è vera. \[4^3\cdot 2^3= (4\cdot 4\cdot 4) \cdot (2\cdot 2 \cdot 2) = (4 \cdot 2) \cdot (4 \cdot 2)\cdot (4 \cdot 2) =(4 \cdot 2)^3 \]
Il quoziente di due potenze con lo stesso esponente \(n\) è la potenza che ha come base il quoziente delle basi e come esponente lo stesso esponente. \[a^n : b^n = (a: b)^{n}\]
Ecco un esempio per convincerti che ha senso: conviene scrivere la divisione come frazione.
\[4^3:2^3 = \frac{4\cdot 4\cdot 4}{2\cdot 2 \cdot 2} = \frac{4}{2} \cdot \frac{4}{2} \cdot \frac{4}{2} = \left(\frac{4}{2}\right)^3 \]
Questa proprietà consente di definire le potenze anche sulle frazioni: basta distribuire l'esponente sia al numeratore che al denominatore.
\[ \left( \frac{a}{b}\right)^n := \frac{a^n}{b^n}\]
A questo punto passiamo alla pratica: fare esercizi aiuta sia a memorizzare le proprietà che a capire quando usarle.
Calcola l'espressione. \[ \left( 3^4\cdot \frac{1}{3^7} \right)^{-1}\] In questo caso, ti conviene riscrivere la frazione come potenza con esponente negativo. \[ \left( 3^4\cdot 3^{-7} \right)^{-1}\] Usa le proprietà delle potenze: hai un prodotto di potenze con la stessa base, quindi puoi sommare gli esponenti: \(4+(-7) =4-7 =-3\). \[ \left( 3^{-3} \right)^{-1}\] Hai una potenza di potenza: basta moltiplicare i due esponenti: \(-3\cdot(-1) = 3\), quindi \[ \left( 3^{-3} \right)^{-1} = 3^3 =\bf{27}\]
Nel prossimo esercizio vedrai come usare le proprietà delle potenze per semplificare delle frazioni.
Calcola il valore dell'espressione seguente. \[ (2^6:3^4)\cdot \left( \frac{2^3}{3^5} \right)^{-1}\]
Per cominciare scrivi la divisione sottoforma di frazione. Nella frazione già presente puoi applicare la potenza: il risultato dell'elevare alla \(-1\) è l'inverso, ovvero la frazione con numeratore e denominatore invertiti.
\begin{align} & (2^6:3^4)\cdot \left( \frac{2^3}{3^5} \right)^{-1} = \\ = & \left(\frac{2^6}{3^4} \right) \cdot \left( \frac{3^5}{2^3} \right) \end{align}
Adesso puoi applicare le proprietà delle potenze.
\begin{align} & \frac{2^6 \cdot 3^5}{3^4 \cdot 2^3} = \\ = & 2^{6-3} \cdot 3^{5-4} = \\ = & 2^3 \cdot 3 =8 \cdot 3 = \bf{24}\end{align}
Le regole sulle proprietà delle potenze si applicano anche ai monomi.
Calcola \( (2a)^3: 4a\).
Per prima cosa, distribuisci la potenza ed esprimi 4 come potenza di 2. \[ (2^3a^3): (2^2 a^2)\] È il turno della divisione: puoi fare il quoziente tra le potenze con base 2 e moltiplicarlo per quelle con base \(a\). Ricorda che, quando l'esponente non è scritto esplicitamente, vale 1: \(a=a^1\). \[ (2^3a^3): (2^2 a) = 2^{3-2}a^{3-1} = 2a^2\]
Quando qualcosa funziona bene, si cerca sempre di usarlo anche in altri contesti. Funziona così anche per le potenze: visto che gli esponenti naturali funzionano bene, la comunità matematica ha pensato bene di definire le potenze anche per esponenti interi, razionali e irrazionali. L'idea è quella di dare le definizioni in modo che continuino a valere le proprietà delle potenze.
Si parte dai numeri negativi, anzi, da \(-1\). La potenza con esponente \(-1\) è definita per ogni base eccetto \(0\), e dà come risultato l'inverso della base: ossia il numero che, moltiplicato per la base, dà \(1\). \[a^{-1} := \frac{1}{a} \qquad \text{ per }a \neq 0\]
Questo permette di definire allo stesso modo le potenze sui numeri negativi: una base elevata a un numero negativo dà l'inverso della potenza con l'esponente positivo. \[a^{-n} := \frac{1}{a^n}\]
Si possono definire anche potenze con esponente razionale: la potenza con esponente \(\frac{1}{n}\), per \(n \neq 0\), si definisce come la radice \(n\)-esima della base. Attenzione, però: se \(n\) è un numero pari, questa potenza è definita solo se \(a \geq 0\)!
\[a^{\frac{1}{n} }= \sqrt[n]{a}\]
A questo punto si può definire una potenza che ha per esponente qualsiasi numero razionale: il numeratore diventa l'esponente della potenza e il denominatore l'indice della radice.
\[ a^{\frac{n}{m}} := \sqrt[m]{a^n}\]
Questa proprietà si usa moltissimo quando lavori con i radicali.
Nelle espressioni con le potenze è importante ricordare in quale ordine fare le operazioni. In Italia si usa la convenzione PEMDAS: quando ci sono dubbi su quale operazione va svolta per prima, la priorità va ai calcoli tra Parentesi, poi quelli con gli Esponenti, dopodiché vengono Moltiplicazioni e Divisioni, infine Addizioni e Sottrazioni.
Svolgi l'espressione. \[\left\{ \left[ \left(3^2-7\right)^3 + \left(2\cdot (2\cdot 3^2 -15)\right)^2\right] :2^2-2\right\} :9\]
Soluzione.
Comincia svolgendo i calcoli tra parentesi.\begin{align} & \left\{\left[\left(9-7\right)^3 + \left(2\cdot(18 -15)\right)^2\right]:2^2-2 \right\}:9 \\ = & \left\{\left[2^3 + \left(2\cdot3\right)^2\right]:2^2-2 \right\}:9 = \\ =& \left\{\left[2^3 + 2^2\cdot3^2\right]:2^2-2 \right\}:9\end{align} Ora conviene applicare la proprietà distributiva alla divisione, togliendo la parentesi quadra.\[ \left\{2^3:2^2 + 2^2\cdot3^2:2^2-2 \right\}:9\]
Applica le proprietà delle potenze alle divisioni e svolgi gli ultimi calcoli.\begin{align} & \left\{2^{3-2} + 2^{2-2}\cdot3^2-2 \right\}:9 \\ = & \left\{2 + 3^2-2 \right\}:9 \\ = & \, 3^2:9 \\ = & \, \bf{1} \end{align}
Passiamo alle frazioni!
Svolgi l'espressione seguente. \[ \left[\left(\frac{8}{3}\right)^2 : \frac{2}{9}\right] \cdot \frac{1}{4} + 3^3 \cdot \frac{1}{9}\]
Soluzione.
Come primo passaggio conviene esprimere tutti i numeri non primi in forma di potenza: \(8=2^3, 9=3^2, 4=2^2\). Sostituisci la divisione per la frazione con la moltiplicazione per il reciproco.\[ \left[\left(\frac{2^3}{3}\right)^2 \cdot \frac{3^2}{2}\right] \cdot \frac{1}{2^2} + 3^3 \cdot \frac{1}{3^2}\]
Ora puoi fare la potenza di potenza nella prima parentesi. Nella moltiplicazione più a destra puoi semplificare dei fattori.\[ \left[\frac{2^6}{3^2} \cdot \frac{3^2}{2}\right] \cdot \frac{1}{2^2} + 3^\cancel{3} \cdot \frac{1}{\cancel{3^2}}\]
Puoi togliere le parentesi quadre e fare le semplificazioni incrociate tra le prime tre frazioni.\[ \frac{{2^{\cancel 6}}^3}{\cancel{3^2}} \cdot \frac{\cancel{3^2}}{\cancel 2} \cdot \frac{1}{\cancel{2^2}} + 3\]
Calcola la potenza e somma i risultati.\begin{align} 2^3+3 = 8+3 =\bf{11} \end{align}
Aggiungiamo qualche lettera per prendere confidenza con le potenze sui polinomi.
Calcola il valore dell'espressione seguente. \[ \left((a^2b)^2 \cdot ab^3 \right):a^3b^2 \] Come prima cosa svolgi la potenza "distribuendo" l'esponente. \begin{align} & \left( (a^2)^2b^2 \cdot ab^3\right):a^3b^2 \\ = \, &( a^4b^2 \cdot ab^3):a^3b^2 \end{align} A questo punto fai i prodotti con le stesse basi. \begin{align} & ( a^{4 +1} \cdot b^{2+3}):a^3b^2 \\ =\, & ( a^5 \cdot b^5):a^3b^2 \end{align} Infine puoi fare la divisione sfruttando ancora una volta le proprietà delle potenze. \begin{align} & (a^5:a^3) \cdot (b^5:b^2) \\ = \, & \mathbfit{ a^2b^3} \end{align}
Le proprietà delle potenze descrivono alcuni casi particolari in cui i calcoli si semplificano. Per ogni base a e ogni esponente n,m si ha che:
Prodotti e quozienti di potenze con la stessa base hanno le proprietà seguenti:
Prodotti e quozienti di potenze con lo stesso esponente hanno le proprietà seguenti:
Quando si devono fare operazioni tra potenze con basi ed esponenti diversi non si può semplificare nulla: la potenza si scrive così com'è!
Gli esponenti si sommano se si devono moltiplicare tra loro due potenze con la stessa base: an·am=an+m.
Non ci sono scorciatoie per le addizioni con le potenze: bisogna calcolare il valore delle potenze e sommarle tra di loro.
Iscriviti per sottolineare e prendere appunti. É tutto gratis.
Over 10 million students from across the world are already learning smarter.
Get Started for Free