L'app all-in-one per gli studenti
4.8 • +11K recensioni
Più di 3 milioni di downloads
Free
Quando due onde si sovrappongono, la loro somma produce un'onda diversa in termini di ampiezza. Questa nuova onda può essere amplificata oppure ridotta in ampiezza in base alla fase delle onde originali. Vediamolo insieme!Le caratteristiche fondamentali per descrivere un'onda sono la sua ampiezza \(A\), la sua frequenza \(f\) (o alternativamente la lunghezza d'onda \(\lambda\)) e la fase dell'onda \(\phi\). L'ampiezza…
Explore our app and discover over 50 million learning materials for free.
Salva la spiegazione subito e leggila quando hai tempo libero.
SalvaLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenQuando due onde si sovrappongono, la loro somma produce un'onda diversa in termini di ampiezza. Questa nuova onda può essere amplificata oppure ridotta in ampiezza in base alla fase delle onde originali. Vediamolo insieme!
Le caratteristiche fondamentali per descrivere un'onda sono la sua ampiezza \(A\), la sua frequenza \(f\) (o alternativamente la lunghezza d'onda \(\lambda\)) e la fase dell'onda \(\phi\). L'ampiezza indica quanto alta è l'onda in un grafico, la frequenza è il numero di oscillazioni che l'onda esegue per un'unità di tempo e la fase è uno spostamento dell'onda rispetto ad una posizione di riferimento.
Per chiarire meglio le idee e i concetti di ampiezza, frequenza e fase, prendiamo l'esempio in figura 1 in cui abbiamo le funzioni sinusoidali \(sin(x)\) e \(sin(x+\pi/2)\). Entrambe hanno la stessa forma, poiché l'ampiezza e la frequenza sono le stesse, ma se osserviamo i grafici notiamo che sono spostate l'una rispetto all'altra.
Fig. 1 - Equazioni \(sin(x)\) in rosso e \(sin(x+\pi/2)\) in nero.
La fase di queste due onde è diversa! La funzione in nero \(sin(x+\pi/2)\) è spostata di \(\pi/2\) indietro rispetto alla funzione \(sin(x)\) in rosso. Possiamo notare questo sfasamento basandoci sul fatto che sappiamo che la funzione seno attraversa l'origine del grafico, mentre la funzione sfasata non lo attraversa. La fase è estremamente importante, perché, come vedremo, cambia moltissimo il modo in cui le onde si sovrappongono.
Studiamo le differenze di fase con l'aiuto di un punto di riferimento. Nel grafico precedente, il punto di riferimento è lo zero del grafico. L'angolo di fase dell'onda rossa \(sin(x)\) è tecnicamente zero e può essere rappresentata come \(sin(x+0)\). Il punto di partenza dell'onda, quindi, è lo stesso del nostro punto di riferimento, senza alcuna differenza di fase.
Per l'onda nera, invece, la differenza di fase è positiva (\(+ \pi/2)\), che significa che l'origine dell'onda (il suo punto di partenza) appare "prima" nel grafico. Questo si può notare estrapolando l'onda nera a sinistra del grafico e vedendo che questa intersecherebbe l'asse delle \(x\) "prima" dell'origine. Quando la differenza di fase è negativa, l'origine dell'onda appare "dopo" l'origine e sul grafico apparirebbe a destra dell'origine.
Essendo le funzioni seno come nell'esempio delle funzioni periodiche di periodo \(2\pi\) che oscillano all'infinito, prendere una fase di \(+\pi/2\) o di \(-5/2 \pi\) è completamente equivalente.
Se sommiamo due onde identiche, l'ampiezza risultante raddoppia:
\[ sin(x) + sin(x) = 2 sin(x)\]
Sebbene questa cosa sia matematicamente ovvia, vediamo cosa significa visivamente con due sinusoidi una sopra all'altra come in figura 2.
Fig. 2 - Due funzioni sinusoidi traslate sotto e sopra l'asse delle x.
I punti che hanno la stessa coordinata x hanno anche la stessa ampiezza. Applicando la somma, l'onda si estende. Dove l'ampiezza era 1, ora è 2, e dove era -1, ora è -2. Questo fenomeno si chiama interferenza costruttiva. Un esempio tratto dalla vita quotidiana è quello di due altoparlanti che riproducono lo stesso brano. Il volume della musica percepita è massimo quando le onde prodotte dagli altoparlanti sono in fase e interferiscono costruttivamente.
Quando le onde hanno fasi diverse, il risultato della sovrapposizione cambia, soprattutto se sono in opposizione di fase o in controfase quando ogni punto viene sommato a uno di valore opposto, ad esempio 1 + (-1), come nel grafico seguente.
Fig. 3 - \(sin(x-\pi/2)\) in blu e \(sin(x+\pi/2)\) in rosso. La loro somma è una retta pari a zero.
La somma di queste onde è nulla a causa dell'interferenza distruttiva. Si noti come, in questo caso, la fase è la stessa, ma di segno opposto per entrambe le onde.
\[sin(x-\pi/2) + sin(x+\pi/2)=0\] \[sin(x-\pi/2)-sin(x-\pi/2) = 0\]
Abbiamo visto i due casi estremi, tuttavia, in mezzo ci sono tutte le combinazioni possibili di due onde. La fase dell'onda risultante è spostata a metà tra le fasi delle onde interferenti, a seconda delle loro ampiezze, e il valore della sua ampiezza sarà compreso tra zero e due volte l'ampiezza delle onde interferenti in base alla loro fase.
Fig. 4 - \(sin(x-\pi/2)\) in blu, \(sin(x)\) in rosso e la loro somma in verde.
Abbiamo parlato dell'interferenza tra onde monodimensionali. Lo stesso fenomeno si verifica quando la propagazione avviene lungo due o più dimensioni. In questo caso, due onde interferiscono e creano un disegno di interferenza.
Quando si lanciano due pietre in un lago, di cui una viene lanciata da un punto leggermente diverso da quello da cui è stata lanciata la prima, sulla superficie dell'acqua si forma un'onda bidimensionale. In questo scenario, la superficie dell'acqua si corruga ma presenta comunque una regolarità dovuta all'interferenza tra le due onde create.
Fig. 5 - Nel caso di un'onda bidimensionale, anche la posizione della sorgente (il punto in cui viene lanciato il sasso) influenza il disegno di interferenza. Si noti come le onde siano molto più ondulate in prossimità delle sorgenti e quasi inalterate più distanti da esse.
Nell'immagine, due onde circolari si propagano l'una verso l'altra con un angolo di \(\pi/2\). I fronti d'onda interferiscono quasi ortogonalmente, dando alla superficie dell'acqua un disegno a forma di griglia. Questo tipo di disegno è, ancora una volta, il risultato dell'interferenza delle due onde.
I fenomeni di interferenza si verificano in qualunque caso due onde si sovrappongano.
Esistono due tipi di interferenza: interferenza costruttiva e distruttiva.
Si ha interferenza distruttiva quando due onde interferiscono e hanno fase opposta.
Due onde sono coerenti quando hanno la stessa fase.
How would you like to learn this content?
How would you like to learn this content?
Free fisica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Iscriviti per sottolineare e prendere appunti. É tutto gratis.
Salva le spiegazioni nel tuo spazio personalizzato e accedile ovunque e in qualsiasi momento
Iscriviti con l'e-mail Iscriviti con AppleIscrivendoti accetti Termini e Condizioni e Informativa sulla Privacy di StudySmarter.
Hai già un account? Login