L'app all-in-one per gli studenti
4.8 • +11K recensioni
Più di 3 milioni di downloads
Free
Dagli occhiali da vista, agli specchi deformanti e lunapark, specchi e lenti sono parte della nostra vita quotidiana. Tra le tante branche della fisica, quella che studia come questi oggetti si comportano a contatto con la luce è l'ottica. In particolare, i primi studi su lenti e specchi sono nati con l'ottica geometrica, che si basa sull'idea che la luce…
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDagli occhiali da vista, agli specchi deformanti e lunapark, specchi e lenti sono parte della nostra vita quotidiana. Tra le tante branche della fisica, quella che studia come questi oggetti si comportano a contatto con la luce è l'ottica. In particolare, i primi studi su lenti e specchi sono nati con l'ottica geometrica, che si basa sull'idea che la luce si propaghi come dei raggi rettilinei. Questa visione semplificata permette uno studio comunque esaustivo dei più semplici fenomeni ottici, ma presenta delle limitazioni per quanto riguarda visioni più complesse della luce.
Vediamo subito una definizione formale di ottica geometrica:
L'ottica geometrica è quella branca dell'ottica che studia la luce come se fosse costituita da raggi rettilinei che vengono riflessi e rifratti a contatto con superfici riflettenti o di materiali diversi.
L'ottica geometrica si occupa, quindi, di studiare tutti quei fenomeni che possono essere descritti pensando alla propagazione della luce come una serie di raggi rettilinei, studiando le interazioni con lenti, specchi, prismi e in generale oggetti più grandi della lunghezza d'onda della luce studiata.
Questa branca si basa su tre leggi fondamentali, che andiamo a vedere.
Fig. 1 - Un'immagine tratta dal De multiplicatone specierum di Roger Bacon. Uno dei primi studi sull'ottica geometrica.
La legge di propagazione rettilinea è il concetto alla base dell'ottica geometrica: secondo questa legge, infatti, la luce si propaga lungo delle rette. In questo modo, lo studio dei fenomeni ottici diventa un esercizio di geometria basato sullo studio degli angoli di riflessione e rifrazione della luce.
Questo approccio è, ovviamente, limitato, sebbene molto efficace per gli studi di fenomeni semplici. Vedremo più avanti quali sono queste limitazioni.
Le leggi della riflessione descrivono il comportamento di un raggio di luce che incide su una superficie riflettente e viene riflesso. Esistono due principali leggi della rifrazione con cui si possono descrivere i fenomeni dovuti a superfici riflettenti:
Il raggio incidente e quello riflesso si trovano sullo stesso piano che è definito dal raggio incidente e dalla perpendicolare alla superficie.
L'angolo che il raggio riflesso forma con la perpendicolare alla superficie riflettente è lo stesso che forma l'angolo incidente. In altre parole, possiamo dire che \(\theta_i = \theta_r\).
La rifrazione è invece quel fenomeno per cui la luce incidente su un mezzo trasparente viene deviata nel suo percorso. Si pensi a quando guardiamo un oggetto dietro ad un bicchiere d'acqua, questo apparirà deformato e deviato. Questo è l'effetto della rifrazione.
Anche in questo caso le leggi che governano questo fenomeno sono due:
Similarmente alla riflessione, il raggio uscente dalla superficie rifrangente si trova sullo stesso piano che il raggio incidente genera con la normale alla superficie.
Gli angoli del raggio incidente e rifratto rispetto alla normale alla superficie seguono la cosiddetta legge di Snell, ovvero \(n_1 sin\theta_1 = n_2 sin \theta_2\), dove \(n_1\) e \(n_2\) sono gli indici di rifrazione dei materiali di propagazione dell'onda incidente e rifratta rispettivamente.
Questa legge ci permette di introdurre un coefficiente molto importante nell'ottica, che è l'indice di rifrazione \(n\), che dipende dal materiale con cui sono costituiti i mezzi.
Una delle principali materie di studio dell'ottica geometrica sono le lenti sottili, nell'articolo su lenti e specchi vedremo in particolare come esistano lenti convergenti (convesse) o divergenti (concave), le leggi geometriche che le regolano e qualche esempio pratico. In particolare, ci occuperemo di lenti sferiche sottili, ovvero lenti dallo spessore molto contenuto (in cui non dobbiamo considerare effetti di rifrazione interna) le cui facce sono sezioni di una sfera.
Vedremo anche che esiste un'equazione (detta delle lenti sottili) che, molto semplicemente, descrive bene la formazione delle immagini da parte di una lente ottica, vediamola brevemente:
\[\frac{1}{p}+\frac{1}{q}=\frac{1}{f}\]
dove \(p\) è la distanza tra l'oggetto e la lente, \(q\) è la distanza dell'immagine dalla lente e \(f\) è la lunghezza focale della lente.
Un'altra importante proprietà delle lenti è l'ingrandimento, che può essere calcolata con la semplicissima formula
\[I = \frac{q}{p}\]
dove \(q\) e \(p\) sono gli stessi della formula per le lenti sottili.
Fig. 2 - Esempi di diversi tipi di lente
Un altro elemento importante nello studio dell'ottica geometrica sono gli specchi. In particolare vedremo gli specchi sferici, essendo più interessanti di quelli piani da studiare, questi ultimi infatti possono essere praticamente completamente descritti usando la legge della riflessione.
L'equazione dei punti coniugati viene usata per calcolare a che distanza dallo specchio si forma l'immagine riflessa. Questa legge lega le distanze tra specchio e oggetto, immagine e specchio e la distanza focale dello specchio. La annunciamo brevemente, rimandando all'articolo su lenti e specchi per una trattazione più approfondita.
L'equazione dei punti coniugati è molto semplice:
\[\frac{1}{p}+\frac{1}{p}=\frac{1}{f}\]
dove \(p\) è la distanza tra lo specchio e l'oggetto riflesso, \(q\) è la distanza dell'immagine riflessa dallo specchio e \(f\) è la lunghezza focale dello specchio. Come si può vedere questa legge assomiglia molto a quella delle lenti sottili!
Purtroppo, non tutti i fenomeni ottici sono descrivibili con le sole leggi dell'ottica geometrica. Pensiamo ad esempio ad una macchia d'olio sull'asfalto. Questa crea un arcobaleno di colori diversi che possiamo osservare se la guardiamo direttamente. Questo fenomeno è chiamato interferenza da lamina sottile, e non è completamente spiegabile con le leggi che abbiamo visto.
I fenomeni di interferenza, alcuni fenomeni di diffrazione e in generale tutti i fenomeni di interazione tra la luce e oggetti più piccoli della sua lunghezza d'onda non sono spiegabili attraverso le leggi dell'ottica geometrica, che ha però il vantaggio di descrivere le interazione della luce con lenti e specchi estremamente facilmente.
Per poter spiegare a pieno questi fenomeni, vi consigliamo gli articoli su rifrazione, diffrazione e interferenza, in cui esaminando la luce come un fenomeno ondulatorio, possiamo comprendere alcuni di queste interazioni.
Il prisma ottico serve a diffrangere la luce nel suo spettro.
Le lenti convergenti servono a mettere a fuoco un'immagine, possono generare sia immagini virtuali che reali a seconda di dove si trova l'oggetto osservato rispetto l'asse ottico.
Una lente divergente genera sempre un'immagine virtuale, diritta e rimpicciolita.
How would you like to learn this content?
94% of StudySmarter users achieve better grades.
Sign up for free!94% of StudySmarter users achieve better grades.
Sign up for free!How would you like to learn this content?
Free fisica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Iscriviti per sottolineare e prendere appunti. É tutto gratis.