Pressione atmosferica: definizione
Così come ogni altro fluido, l'aria esercita una pressione sui corpi che vi sono immersi. La pressione atmosferica è, quindi, la pressione dovuta al peso della colonna d'aria che grava su una superficie.
La pressione atmosferica è definita come il rapporto tra il peso della colonna d'aria che preme su una data superficie e la superficie stessa.
Se ti ricordi la legge di Stevino (qui su StudySmarter trovi un articolo dedicato!), ti aspetterai che la pressione esercitata dalla colonna d'aria non sia costante, ma vari con la quota. Questo infatti è ciò che accade! Ma prima di vedere come la pressione decresce con l'altitudine, vediamo come fu misurata per la prima volta!
Pressione atmosferica: il tubo di Torricelli
Evangelista Torricelli scoprì per primo che l'atmosfera esercita una pressione e ideò uno strumento per misurarla. Tale strumento è chiamato tubo di Torricelli o barometro di Torricelli. Vediamo come funziona!
In una vaschetta contenente mercurio viene posto un tubo chiuso all'estremità in alto e aperto all'estremità in basso, come mostrato nella Figura 2. All'interno del tubo viene fatto il vuoto.
Poiché l'atmosfera esercita una pressione sul mercurio nella contenitore ma non sul mercurio all'interno del tubo (l'estremità in alto del tubo è chiusa), il mercurio risale lungo il tubo fino a quando il sistema non raggiunge la condizione di equilibrio. Quest'ultima è raggiunta quando il valore della pressione atmosferica uguaglia quello della pressione esercitata dalla colonna di mercurio all'interno del tubo.
Dalla legge di Stevino si ha:
\[P_\mathrm{Hg} = \rho_\mathrm{Hg} g h\,, \]
dove \(\rho_\mathrm{Hg}\) è la densità del mercurio e \(h\) è l'altezza della colonna di mercurio nel tubo rispetto al livello del mercurio nel contenitore.
All'equilibrio vale la seguente relazione:
\[P_\mathrm{atm} = P_\mathrm{Hg}= \rho_\mathrm{Hg} g h\,. \]
Quindi, la misura di \(h\) permette di ricavare il valore della pressione atmosferica \(P_\mathrm{atm}\) (le altre quantità sono note). Torricelli misurò il seguente valore:
\[h = 760\, \mathrm{mm}\,. \]
Da questo risultato capiamo come mai la pressione atmosferica è a volte misurata in millimetri di mercurio (\(1\, \mathrm{mmHg}= 1\, \mathrm{torr}\))!
Nella sezione successiva vedremo quali sono le diverse unità di misura della pressione atmosferica. Possiamo intanto anticipare che 760 millimetri di mercurio equivale a 1 atmosfera:
\[1\, \mathrm{atm} = 760\, \mathrm{mmHg}\,. \]
Pressione atmosferica: unità di misura
Riprendendo la formula
\[P_\mathrm{atm} = \rho_\mathrm{Hg} g h\,, \] e inserendo i dati, otteniamo:
\[P_\mathrm{atm} = \bigl ( 13{,}6 \times 10^3 \, \mathrm{kg}/\mathrm{m^3} \bigr ) \times \bigl ( 9{,}81\, \mathrm{m}/\mathrm{s^2} \bigr) \times \bigl (0{,}76\, \mathrm{m} \bigr ) \approx 1{,}013 \times 10^5 \, \mathrm{N}/\mathrm{m^2}\,. \]
Nei calcoli abbiamo utilizzato il valore della densità del mercurio a \(T = 0 ° \mathrm{C}\), ovvero, \(\rho_\mathrm{Hg}= 13,6 \cdot 10^3 \, \mathrm{kg}/\mathrm{m}^3\).
Questo valore della pressione è valido in condizioni standard, ovvero, a livello del mare (altitudine zero), a una latitudine di \(45°\) e a una temperatura di \(0 ° \mathrm{C}\). Vedremo più avanti che la pressione varia con la quota e con la temperatura.
Nel SI l'unita di misura della pressione è il Pascal e corrisponde a un newton su metro quadro: \( 1 \, \mathrm{Pa} = 1 \, \mathrm{N}/\mathrm{m}^2\). Quindi, utilizzando le unità di misura nel SI, possiamo scrivere:
\[P_\mathrm{atm} \approx 1{,}013 \times 10^5 \, \mathrm{Pa}\,. \]
o, più precisamente:
\[ P_\mathrm{atm} = 101\,325 \, \mathrm{Pa}\,.\]
Le unità di misura della pressione atmosferica includono le seguenti:
- il pascal (\(\mathrm{Pa}\));
- l'atmosfera (\(\mathrm{atm}\)): \(1 \mathrm{atm} = 101\,325 \, \mathrm{Pa}\).
- il torr: \( 1 \, \mathrm{torr} = 1 \, \mathrm{mmHg} = 133{,}32 \, \mathrm{Pa}\);
- il bar (\(\mathrm{bar}\)): \(1 \, bar = 10^5 \, \mathrm{Pa} \) .
Variazione della pressione atmosferica con la quota
Abbiamo visto che, in condizioni standard (altitudine zero, latitudine di \(45°\) e \(T=0 ° \mathrm{C}\) ), la pressione atmosferica è pari a \( P_\mathrm{atm} = 101\,325 \, \mathrm{Pa}\). Cosa avviene se saliamo di quota? Si potrebbe pensare che la pressione vari linearmente con la quota \(z\), secondo la legge che abbiamo visto per i liquidi, ovvero, la legge di Stevino: \(P= \rho g z\). Tuttavia, nel caso dell'aria, la situazione è più complessa. Infatti, dobbiamo tener conto che la densità dell'aria diminuisce (in altre parole, diventa più rarefatta), con la quota. Questo significa che gli strati più alti dell'atmosfera portano un contributo minore rispetto al contributo portato dagli strati più bassi!
Quindi, applicando la legge di Stevino \(P= \rho g h\) a tutta l'atmosfera (\(h \approx 100\, \mathrm{km}\)), otterremo un risultato sbagliato (molto maggiore del valore corretto) perché stiamo assumendo \(\rho= \mathrm{costante}\).
Si può dimostrare che la variazione di pressione con la quota non è lineare come nel caso dei liquidi. Assumendo un'atmosfera isoterma, la pressione segue il seguente andamento con la quota:
\[P = P_0 e^{-z/\alpha}\,, \]
dove \(P_0\) è il valore della pressione atmosferica in condizioni standard e \(\alpha \approx 8\, km\) a \(T= 0° \mathrm{C}\). Quindi, a circa \( 8 \, km\), la pressione si riduce di circa un terzo!
Se vuoi sapere come arrivare a questa funzione, dai un'occhiata all'approfondimento che trovi di seguito!
Supponendo che l'atmosfera sia isoterma e applicando la legge dei gas perfetti (per un ripasso sulle leggi dei gas, dai un'occhiata al nostro articolo su gas perfetti e reali!), possiamo scrivere:
\[ P V = \mathrm{costante}\,.\]
Poiché il volume è inversamente proporzionale alla densità, possiamo scrivere
\[ \frac{P}{\rho} = \mathrm{costante}\,.\]
Questo significa che il rapporto tra pressione e densità rimane costante con la quota. Questo equivale a scrivere
\[ \frac{P_0}{\rho_0} = \frac{P}{\rho}\,,\]
dove \(P_0\) e \(\rho_0\) sono, rispettivamente, i valori di pressione e densità al livello del mare (quota \(z=0\)) e \(P\) e \(\rho\) sono, rispettivamente, i valori di pressione e densità a una generica quota \(z\). Possiamo quindi scrivere la seguente equazione per la densità:
\[ \rho = \rho_0 \frac{P}{P_0}\,.\]
Se consideriamo un'infinitesima variazione di quota \(dz\), possiamo utilizzare la legge di Stevino:
\[dP = \rho g dz\,. \]
Sostituendo l'espressione che abbiamo ricavato per \(\rho\) nell'equazione differenziale che abbiamo appena scritto otteniamo:
\[\frac{dP}{dz} = - \rho g = - \rho_0 \frac{P}{P_0} g\,. \]
Moltiplicando entrambi i membri per \(dz\) e dividendo per \(P\), otteniamo:
\[\frac{dP}{P} = - \frac{\rho_0}{P_0} g dz\,. \]
Ponendo \(\frac{P_0}{\rho_0 g} = \alpha\), possiamo scrivere:
\[\frac{dP}{P} = - \frac{dz}{\alpha}\,. \]
Per trovare la soluzione dobbiamo quindi integrare tra la quota \(z=0\) e la generica quota \(z\):
\[ \int_{P_0}^P \frac{dP}{P} = - \frac{1}{\alpha} \int_0^z dz\,.\]
Risolvendo l'integrale, abbiamo:
\[ \ln (\frac{P}{P_0} ) = - \frac{z}{\alpha}\,,\]
ovvero,
\[ P = P_0 e^{-z/\alpha}\,.\]
Questa legge constituisce una buona approssimazione della variazione di pressione con la quota, ma è bene ricordare che è stata ricavata assumendo un'atmosfera isoterma, ovvero, assumendo che la temperatura non vari con la quota!
La variazione di pressione con la quota è il motivo per cui alcune persone provano dolore all'orecchio durante i viaggi in aereo. Infatti, i rapidi cambiamenti di pressione dell'aria nelle fasi di decollo e atterraggio possono causare un aumento della pressione sulla membrana timpanica. I sintomi associati più comuni sono senso di ovattamento, fischi, ronzii o dolore di varia intensità.
Variazione della pressione atmosferica con la temperatura
La temperatura dell'aria influisce sul valore della pressione atmosferica. Infatti, quando l'aria si scalda, tende a dilatarsi e, quindi, a diventare meno densa. Di conseguenza, nelle aree dove l'aria è più calda si registra generalmente una pressione più bassa e viceversa.
Variazione della pressione atmosferica con l'umidità
Anche l'umidità dell'aria influisce sulla pressione. Infatti, a causa della bassa densità dell'aria umida rispetto a quella secca, nelle zone con maggiore umidità vi è solitamente una pressione più bassa rispetto alle zone dove l'aria è secca.
Pressione atmosferica - Punti chiave
- La pressione atmosferica è definita come il rapporto tra il peso della colonna d'aria che preme su una data superficie e la superficie stessa.
- In condizioni standard, ovvero, a livello del mare (altitudine zero), a una latitudine di \(45°\) e a una temperatura di \(0 ° \mathrm{C}\), il valore della pressione è di \( 101\,325 \, \mathrm{Pa}\).
- Le unità di misura della pressione amtosferica includono il pascal, l'atmosfera, il torr e il bar. Nel SI la pressione si misura in Pascal: \( 1 \, \mathrm{Pa} = 1 \, \mathrm{N}/\mathrm{m}^2\).
- La pressione atmosferica fu misurata per la prima volta da Torricelli tramite un apparato strumentale che divenne noto come tubo di Torricelli.
- Quota, temperatura e umidità influenzano il valore della pressione atmosferica.
- La pressione atmosferica decresce con la quota in modo non lineare. Assumendo un'atmosfera isoterma, l'andamento della pressione con la quota è descritto dalla seguente funzione: \( P = P_0 e^{-z/\alpha}\), dove \(\alpha \approx 8\, km\) a \(T= 0° \mathrm{C}\).
Learn with 6 Pressione atmosferica flashcards in the free StudySmarter app
We have 14,000 flashcards about Dynamic Landscapes.
Hai già un account? Accedi
Domande frequenti riguardo Pressione atmosferica
Cos'è la pressione atmosferica e da quali fattori dipende?
La pressione atmosferica è la pressione dovuta al peso della colonna d'aria che grava su una data superficie. Essa varia con la quota, la temperatura e l'umidità dell'aria.
Quando la pressione atmosferica è alta?
In generale, la pressione atmosferica è alta per basse temperature e bassa umidità. Infatti, la pressione non varia soltanto con la quota, ma anche con la temperatura e l'umidità. Nello specifico, quando l'aria si scalda tende a diventare meno densa e, quindi, la pressione si abbassa. Quando l'umidità dell'aria sale, la pressione si abbassa poichél'aria umida è meno densa di quella secca.
About StudySmarter
StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.
Learn more