L'app all-in-one per gli studenti
4.8 • +11K recensioni
Più di 3 milioni di downloads
Free
In Legami covalenti e dativi abbiamo imparato che un legame covalente è una coppia condivisa di elettroni. Gli orbitali elettronici esterni di due atomi si sovrappongono e gli elettroni formano una coppia, nota come coppia di legame. In una molecola come l'acido cloridrico HCl, la coppia di legame si trova a metà strada tra gli atomi di cloro Cl2. Ma nell'acido cloridrico…
Explore our app and discover over 50 million learning materials for free.
Salva la spiegazione subito e leggila quando hai tempo libero.
SalvaLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenIn Legami covalenti e dativi abbiamo imparato che un legame covalente è una coppia condivisa di elettroni. Gli orbitali elettronici esterni di due atomi si sovrappongono e gli elettroni formano una coppia, nota come coppia di legame. In una molecola come l'acido cloridrico HCl, la coppia di legame si trova a metà strada tra gli atomi di cloro Cl2. Ma nell'acido cloridrico HCl, gli elettroni non sono condivisi uniformemente tra i due atomi. Si trovano infatti più vicini all'atomo di cloro. Poiché gli elettroni sono negativi, questo rende l'atomo di cloro parzialmente carico negativamente. Possiamo rappresentarlo con il simbolo δ. Allo stesso modo, l'atomo di idrogeno è ora leggermente carente di elettroni, quindi è parzialmente carico positivamente. Il legame cloro-idrogeno è polare.
Un legame polare è un legame covalente in cui gli elettroni che formano il legame sono distribuiti in modo non uniforme. Possiamo dire che ha una distribuzione di carica non uniforme.
Il legame ha il cosiddetto momento di dipolo.
Il momento di dipolo è una misura della separazione delle cariche in una molecola.
Il momento di dipolo influenza quindi la polarità di una molecola. Affinchè una molecola sia polare il suo momento di dipolo deve essere diverso da zero.
Figura 1. La polarità del legame in HCl. L'idrogeno è parzialmente carico positivamente mentre il cloro è parzialmente carico negativamente.
La polarità di un legame è determinata dall'elettronegatività dei due atomi presenti.
L'elettronegatività è la capacità di un atomo di attrarre una coppia di elettroni di legame.
L'elettronegatività è simboleggiata da X. Un elemento con un'elevata elettronegatività, è in grado di attrarre una coppia di legami, mentre un elemento con un'elettronegatività bassa non è altrettanto capace.
Quando due atomi con diversa elettronegatività si legano covalentemente, formano un legame polare. Immagina di fare il tiro alla fune con un tuo amico. Al centro della corda è legato un nastro rosso, che rappresenta la coppia di elettroni di legame. Sia tu che il tuo amico tirate la corda più forte che potete. Se avete la stessa forza, il nastro rosso non si muoverà e nessuno dei due vincerà il tiro alla fune. Tuttavia, se sei molto più forte del tuo amico, riuscirai gradualmente a tirare la corda verso di te, avvicinando il nastro rosso. Gli elettroni di legame sono ora più vicini a te che al tuo amico. Possiamo dire che la tua elettronegatività è maggiore di quella del tuo amico.
Questo è ciò che accade quando due atomi con diversa elettronegatività si legano. L'atomo con maggiore elettronegatività attira la coppia di elettroni di legame verso di sé e allontana l'altro atomo. Il legame è ora polare. L'elemento con maggiore elettronegatività è parzialmente carico negativamente, mentre l'altro elemento è parzialmente carico positivamente.
Misuriamo l'elettronegatività utilizzando la scala di Pauling. Linus Pauling è stato un chimico americano famoso per il suo lavoro sulla teoria del legame atomico e per aver contribuito a fondare i campi della biologia molecolare e della chimica quantistica. È anche una delle due sole persone, l'altra è Marie Curie, ad aver vinto due premi Nobel distinti in due campi diversi (per la Pace e per la Chimica). A soli 31 anni inventò la scala di Pauling per confrontare le elettronegatività dei diversi elementi. La scala va da 0 a 4 e utilizza l'idrogeno come punto di riferimento, pari a 2,2.
Se si osserva la tavola periodica riportata di seguito, si può notare che esistono chiari schemi nelle elettronegatività dei diversi gruppi e periodi. Ma prima di esaminare alcune di queste tendenze, dobbiamo esplorare i fattori che influenzano l'elettronegatività di un elemento.
Figura 2. L'elettronegatività degli elementi nella tavola periodica. Puoi osservare le diverse tendenze? Fonte: commons.wikimedia.org
Con un valore di 0,70, il francio è l'elemento meno elettronegativo, mentre il fluoro è il più elettronegativo.
Suggerimento: nota che l'elettronegatività non ha unità.
Come abbiamo appena imparato, l'elettronegatività è la capacità di un atomo di attrarre una coppia di elettroni di legame. L'elettronegatività di un elemento è influenzata da tre fattori, tutti legati alla forza di attrazione tra il nucleo dell'atomo e la coppia di legami. Ricordiamo che le differenze di elettronegatività causano la polarità dei legami.
Un atomo con più protoni nel nucleo ha una carica nucleare maggiore. Ciò significa che attirerà gli elettroni di legame in modo più forte rispetto a un atomo con una carica nucleare più bassa, e quindi ha una maggiore elettronegatività. Immaginate di utilizzare un magnete per raccogliere limatura di ferro. Se sostituisci il magnete con uno più forte, questo raccoglierà la limatura molto più facilmente del magnete più debole.
Il nucleo di un atomo con un grande raggio atomico è molto lontano dalla coppia di elettroni di legame nel suo guscio di valenza. L'attrazione tra loro è più debole e quindi l'atomo ha un'elettronegatività inferiore rispetto a un atomo con un raggio più piccolo. Utilizzando l'esempio del magnete, è come se il magnete si allontanasse di più dalla limatura: non ne raccoglierà altrettanta.
Sebbene gli atomi possano avere cariche nucleari diverse, la carica effettiva percepita dagli elettroni di legame potrebbe essere la stessa. Questo perché la carica nucleare è schermata dagli elettroni del guscio interno. Se consideriamo il fluoro e il cloro, entrambi gli elementi hanno sette elettroni nel guscio esterno. Il fluoro ha altri due elettroni nel guscio interno, mentre il cloro ne ha dieci. Questi elettroni schermano gli effetti di due e dieci protoni rispettivamente. Se uno qualsiasi degli elettroni di valenza di uno dei due atomi forma una coppia di legame, questa coppia di legame sentirà solo l'attrazione dei sette protoni rimanenti non schermati. È come avere una calamita più forte ma mettere in mezzo un oggetto di carica opposta. L'attrazione del magnete non sarà così forte. Poiché il fluoro ha un raggio atomico più piccolo, avrà una maggiore elettronegatività.
Figura 3. La disposizione degli elettroni del fluoro a sinistra mentre a destra il cloro. Entrambi hanno sette elettroni nel guscio esterno. Fonte: commons.wikimedia.org
Ora che conosciamo i fattori che influenzano l'elettronegatività, possiamo spiegare alcune delle tendenze dell'elettronegatività osservate nella tavola periodica.
L'elettronegatività aumenta lungo il periodo della tavola periodica. Questo perché gli elementi hanno una carica nucleare maggiore e un raggio leggermente ridotto, ma gli stessi livelli di schermatura da parte dei gusci interni di elettroni.
L'elettronegatività diminuisce scendendo lungo il gruppo nella tavola periodica. Sebbene gli elementi abbiano una carica nucleare maggiore, hanno anche una maggiore schermatura e quindi la carica complessiva avvertita dalla coppia di elettroni di legame è la stessa. Tuttavia, poiché gli elementi più in basso in un gruppo hanno un raggio atomico maggiore, la loro elettronegatività è più bassa.
Figura 5. Tendenze dell'elettronegatività lungo il gruppo 7 della tavola periodica.
La differenza di elettronegatività tra due atomi influisce sul tipo di legame che si forma tra loro:
Si può pensare che si tratti di una scala mobile. Maggiore è la differenza di elettronegatività tra i due atomi, più il legame è ionico.
Ad esempio, l'idrogeno ha un'elettronegatività di 2,2 mentre il cloro ha un'elettronegatività di 3. Come abbiamo visto in precedenza, l'atomo di cloro attirerà la coppia di elettroni di legame in modo più forte rispetto all'idrogeno e diventerà parzialmente carico negativamente. La differenza tra le elettronegatività dei due atomi è di 3,16 - 2,20 = 0,96. Questo valore è superiore a 0,4. Il legame è quindi un legame covalente polare.
Figura 6. La differenza di elettronegatività tra idrogeno e cloro provoca un legame polare. Le loro elettronegatività sono riportate sotto l'atomo.
Se osserviamo il metano, vediamo qualcosa di diverso. Il metano è costituito da un atomo di carbonio unito a quattro atomi di idrogeno mediante legami covalenti singoli. Sebbene ci sia una leggera differenza di elettronegatività tra i due elementi, diciamo che il legame non è polare. Questo perché la differenza di elettronegatività è inferiore a 0,4. La differenza è così piccola che non si tratta di un legame di tipo polare. La differenza è così piccola da essere insignificante. Non c'è dipolo e il metano è quindi una molecola non polare.
Figura 7. L'elettronegatività del carbonio e dell'idrogeno, sono simili da poter affermare che il legame C-H nel metano non è polare. Non mostra nessuna polarità. Fonte: commons.wikimedia.org
I legami polari tendono a creare molecole polari. Tuttavia, è possibile ottenere molecole non polari con legami polari se la molecola è simmetrica. Prendiamo ad esempio il tetraclorometano CCl4. È strutturalmente simile al metano, ma l'atomo di carbonio è unito a quattro atomi di cloro invece che di idrogeno. Il legame C-Cl è polare e ha un momento di dipolo. Ci aspetteremmo quindi che l'intera molecola sia polare. Tuttavia, poiché la molecola è un tetraedro simmetrico, i momenti di dipolo agiscono in direzioni opposte e si annullano a vicenda. (Per saperne di più sui dipoli, consultare la sezione Forze intermolecolari).
Figura 8. Tetraclorometano. Si noti che si tratta di una molecola simmetrica, quindi i suoi momenti di dipolo si annullano. Fonte: commons.wikimedia.org
Una molecola viene resa polare dall'elettronegatività presente negli atomi che la costituiscono.
Significa che è caratterizzata da una parziale carica negativa in corrispondenza dell'atomo di ossigeno ed una parziale carica positiva in corrispondenza dei due atomi di idrogeno.
Si considera la differenza di elettronegatività tra i due atomi che costituiscono la molecola. Se hanno una differenza di elettronegatività compresa tra 0,4 e 1,7, formano un legame covalente polare.
How would you like to learn this content?
How would you like to learn this content?
Free chimica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Iscriviti per sottolineare e prendere appunti. É tutto gratis.
Salva le spiegazioni nel tuo spazio personalizzato e accedile ovunque e in qualsiasi momento
Iscriviti con l'e-mail Iscriviti con AppleIscrivendoti accetti Termini e Condizioni e Informativa sulla Privacy di StudySmarter.
Hai già un account? Login