L'app all-in-one per gli studenti
4.8 • +11K recensioni
Più di 3 milioni di downloads
Free
Una cosa che rende la tavola periodica così speciale è che ogni elemento è diverso in un modo o nell'altro. Sebbene vi siano tendenze in alcune proprietà, tutti gli elementi differiscono leggermente. Una conseguenza di ciò è che tutti hanno una diversa reattività. Questo si può vedere in termini di facilità con cui cedono i loro elettroni o, in altre…
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenUna cosa che rende la tavola periodica così speciale è che ogni elemento è diverso in un modo o nell'altro. Sebbene vi siano tendenze in alcune proprietà, tutti gli elementi differiscono leggermente. Una conseguenza di ciò è che tutti hanno una diversa reattività. Questo si può vedere in termini di facilità con cui cedono i loro elettroni o, in altre parole, di facilità di ossidazione. La serie elettrochimica è una forma pratica di classificazione delle specie ed è alla base delle reazioni redox, delle celle a combustibile e delle batterie.
All'inizio, abbiamo espresso l'idea che alcuni elementi sono più propensi di altri a cedere i propri elettroni. Si tratta di un principio fondamentale della chimica, alla base di tutte le reazioni redox. Per approfondire questo aspetto, dobbiamo esaminare la serie elettrochimica. Ma prima è necessario avere qualche nozione di base. Per questo, inizieremo a definire le semicelle, le celle elettrochimiche e il potenziale elettrodico standard.
Immagina di mettere una barretta di zinco in una soluzione di ioni di zinco. Alla fine si forma un equilibrio, in cui alcuni atomi di zinco cedono i loro elettroni per formare ioni di zinco. Ecco l'equazione. Noterai che è convenzionale scrivere gli ioni e gli elettroni sul lato sinistro e l'atomo di metallo sul lato destro:
Zn2 + 2e- ⇌ Zn(s)
Gli ioni di zinco si spostano in soluzione, mentre gli elettroni rilasciati si raccolgono sulla barra, conferendole una carica negativa. Si crea così una differenza di potenziale tra la barra di zinco e la soluzione di ioni di zinco, nota come potenziale dell'elettrodo. L'esatta posizione di questo equilibrio e l'esatta differenza di potenziale del sistema dipendono dalla reattività dello zinco e dalla facilità con cui cede i suoi elettroni.
Quanto più negativa è la differenza di potenziale, tanto più a sinistra si trova l'equilibrio e tanto più facilmente un metallo cede i suoi elettroni. Ad esempio, un metallo che crea una differenza di potenziale di -1,2 V cede più facilmente i suoi elettroni rispetto a un metallo che crea una differenza di -0,3 V.
Ora, considera cosa accadrebbe se mettessi una barra di rame in una soluzione di ioni di rame. Alcuni atomi di rame reagiscono, cedendo i loro elettroni per formare ioni di rame. Anche in questo caso, alla fine si formerà un equilibrio. Ma il rame è meno reattivo dello zinco e non è così bravo a cedere i suoi elettroni - possiamo dire che il rame è un agente riducente peggiore. Ciò significa che la differenza di potenziale di questo sistema di rame è meno negativa della differenza di potenziale del sistema di zinco. Il sistema creato mettendo un metallo in una soluzione dei suoi stessi ioni viene chiamato "semicella".
Gli agenti riducenti sono a loro volta ossidati. Ciò significa che un agente riducente migliore viene ossidato più facilmente.
Infine, pensa a cosa succederebbe se unissi la semicella di zinco e quella di rame con un filo e un ponte salino. Lo zinco è un agente riducente migliore del rame: è più reattivo e cede più facilmente i suoi elettroni. Ciò significa che ha una differenza di potenziale più negativa rispetto al rame. Si crea una differenza di potenziale complessiva tra le due celle, che possiamo anche chiamare potenziale elettrodico, che mostra la differenza nella facilità con cui i due metalli cedono i loro elettroni. La differenza di potenziale viene misurata da un voltmetro collegato al sistema.
La combinazione di due semicelle è nota come cella elettrochimica. Si basa su semplici reazioni di ossidoriduzione. Poiché lo zinco ha una differenza di potenziale più negativa rispetto al rame, c'è un maggiore accumulo di elettroni sulla barra di zinco. Se permettiamo a questi elettroni di fluire, essi viaggeranno attraverso il filo dallo zinco, migliore agente riducente, al rame, peggiore agente riducente. Nel frattempo, gli ioni positivi della soluzione attraverseranno il ponte salino nella stessa direzione per bilanciare la carica. Gli atomi di zinco si trasformano in ioni di zinco, perdendo elettroni; gli ioni di rame si trasformano in atomi di rame, guadagnando elettroni. Ecco le due equazioni:
All'elettrodo di zinco: Zn(s) → Zn2+(aq) + 2e- All'elettrodo di rame: Cu2+(aq) + 2e- → Cu(s)
In generale, gli elettroni viaggiano sempre dal riducente migliore (il metallo più reattivo, che cede più facilmente i suoi elettroni) al riducente peggiore (il metallo meno reattivo, che cede peggio i suoi elettroni).
Sappiamo che se si mette un metallo in soluzione, si forma un equilibrio di atomi e ioni metallici. Questo crea una differenza di potenziale, il cui valore dipende dalla posizione dell'equilibrio. Non possiamo misurare direttamente la differenza di potenziale generata da una singola semicella. Tuttavia, possiamo misurare la differenza di potenziale generata quando si collegano due semicelle in una cella elettrochimica. Se registriamo le differenze di potenziale generate collegando un'intera gamma di semicelle diverse a una particolare semicella di riferimento, possiamo creare una tabella che confronta questi valori e quindi classificare i metalli dal più reattivo (il miglior agente riducente) al meno reattivo (il peggior agente riducente).
In effetti, gli scienziati lo hanno fatto. La semicella di riferimento utilizzata è l'elettrodo a idrogeno. La differenza di potenziale tra una semicella e l'elettrodo a idrogeno di riferimento in condizioni standard viene chiamata potenziale elettrodico standard della cella. Si tratta di una misura della capacità riducente dell'elemento.
Il potenziale elettrodico standard, E°, è la differenza di potenziale generata quando una semicella è collegata a una semicella di idrogeno in condizioni standard. È noto anche come forza elettromotrice o potenziale di riduzione standard.
Le condizioni standard sono 298 K, 1,00 mol L1 e 100 kPa. È possibile esaminare sia l'elettrodo a idrogeno sia l'importanza delle condizioni standard in Potenziale elettrodico.
Rappresentiamo i potenziali elettrodici standard (E°) utilizzando mezze equazioni che coinvolgono l'elemento e i suoi ioni. Si noti quanto segue:
Ecco il potenziale elettrodico standard per lo zinco, Zn:
Zn2+(aq) + 2e- → Zn(s) E° = -0.76 V
Il valore standard del potenziale dell'elettrodo è negativo. Ciò significa che lo zinco è un agente riducente migliore dell'idrogeno e si ossida più facilmente.
L'accumulo dei potenziali elettrodici standard dei diversi elementi crea la serie elettrochimica.
La serie elettrochimica è un elenco di elementi ordinati in base ai loro potenziali elettrodici standard. Ci dice quanto facilmente ogni elemento si ossida rispetto a una semicella di riferimento, l'elettrodo di idrogeno.
La serie elettrochimica è alla base di tutti i tipi di celle a combustibile e batterie moderne. Ma prima di esaminare queste applicazioni, diamo un'occhiata alla serie elettrochimica stessa sotto forma di tabella.
Il momento che stavate aspettando: ecco una tabella riassuntiva della serie elettrochimica. La tabella mostra le diverse semicelle con i corrispondenti potenziali elettrodici standard.
Semireazione di riduzione | Potenziale elettrodico E° (V) |
F2(g) + 2 e- → 2F (aq) | 2,87 |
H2O2(aq) + 2H+(aq) + 2 e- → 2H2O (l) | 1,78 |
MnO4-(aq) + 8H+(aq) + 5 e- → Mn2+(aq) + 4H2O(l) | 1,51 |
O2(g) + H2O(l) + 4 e- → 4OH-(aq) | 0,40 |
Cu2+(aq) + 2 e- → Cu(s) | 0,34 |
2H+(aq) + 2 e- → H2(g) | 0 |
Fe2+(aq) + 2 e- → Fe(s) | -0,45 |
Al3+(aq) + 3 e- → Al(s) | -1,66 |
Li+(aq) + e-→ Li(s) | -3,04 |
Si noti che la serie elettrochimica può andare da positivo a negativo o da negativo a positivo. In questo caso, l'abbiamo mostrata da positiva a negativa, con l'elemento più facilmente ossidabile (il litio, Li) in fondo. Ciò significa che il litio è l'agente riducente più forte.
Abbiamo imparato a conoscere la serie elettrochimica. Ora consideriamo alcune delle sue applicazioni.
Si tratta della classificazione dei potenziali standard di riduzione delle coppie in equilibrio redox.
Anodo: è l'elettrodo sul quale avviene una semireazione di ossidazione.
Catodo: è l'elettrodo sul quale avviene una semireazione di riduzione.
Si tratta di metodi in cui la misura avviene raccogliendo il segnale, tramite gli elettrodi, dalla soluzione.
How would you like to learn this content?
94% of StudySmarter users achieve better grades.
Sign up for free!94% of StudySmarter users achieve better grades.
Sign up for free!How would you like to learn this content?
Free chimica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Iscriviti per sottolineare e prendere appunti. É tutto gratis.