L'app all-in-one per gli studenti
4.8 • +11K recensioni
Più di 3 milioni di downloads
Free
Quando vediamo un fulmine colpire un parafulmine, cosa succede? Cosa ha a che fare questo fenomeno con il Teorema di Coulomb, che parla invece di densità di carica? Vediamolo insieme!Da non confondersi con la legge di Coulomb, il teorema di Coulomb che permette di calcolare il campo elettrico alla superficie di un conduttore e di trarre alcune importanti conclusioni su…
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenQuando vediamo un fulmine colpire un parafulmine, cosa succede? Cosa ha a che fare questo fenomeno con il Teorema di Coulomb, che parla invece di densità di carica? Vediamolo insieme!
Da non confondersi con la legge di Coulomb, il teorema di Coulomb che permette di calcolare il campo elettrico alla superficie di un conduttore e di trarre alcune importanti conclusioni su come funzionano i conduttori.
Vediamo la definizione del teorema di Coulomb:
Dato un corpo conduttore di cui densità di carica superficiale \(\sigma\), il campo elettrico vicino alla superficie è dato da
\[\boxed{\vec{E} = \frac{\sigma}{\epsilon_0}\hat{n}}\]
In pratica, si osserva che il campo elettrico in prossimità della superficie di un conduttore è perpendicolare alla superficie (\(\hat{n}\) indica il versore normale alla superficie) e il suo valore è direttamente proporzionale alla densità di carica superficiale. Come in molte equazioni in elettrostatica, compare il fattore costante \(\epsilon_0\) che rappresenta la costante dielettrica del vuoto.
In questa sezione daremo una breve dimostrazione del teorema di Coulomb. Si tratta di una dimostrazione per chi ha un po' di dimestichezza con calcoli di differenziali e vettoriali, ma cercheremo di darne una descrizione sufficientemente generale da poter essere apprezzata da tutti.
Fig. 1 - Schema della dimostrazione del teorema di Coulomb.
Se guardiamo una superficie carica molto da vicino possiamo approssimarla ad una superficie piana (pensiamo ad una sfera, quando la guardiamo molto da vicino, sembra quasi piatta - così come l'orizzonte ci appare piatto nonostante il nostro pianeta non lo sia), se abbiamo una superficie piana carica sappiamo da quello che abbiamo già visto sull'elettrostatica che il campo elettrico \(\vec{E}\) sarà perpendicolare alla nostra superficie (come si vede in figura 1).
Una volta fatta questa considerazione, in realtà, abbiamo già fatto molto del lavoro! Infatti se ora pensiamo di prendere un cilindro di base infinitesima \(\mathrm{d}s\) e altezza infinitesima \(\mathrm{d}h\), possiamo calcolare il flusso del campo elettrico attraverso la sua superficie usando il teorema di Gauss. Se ricordiamo, possiamo fare lo stesso ragionamento che abbiamo fatto per dimostrare il teorema di Gauss e vedere che l'unica componente non nulla del flusso del campo elettrico attraverso la superficie è quella che attraversa la base \(\mathrm{d}s\), perché le altre componenti si annullano a due a due.
Quindi, se pensiamo che la densità di carica del cilindro in \(\mathrm{d}s\) sia data da \(\sigma\), possiamo calcolare il flusso infinitesimo passante per \(\mathrm{d}s\) come
\[\mathrm{d}\Phi = \vec{E}\cdot\mathrm{d}\vec{s}\,.\]
Il teorema di Gauss ci dice che il flusso attraverso una superficie chiusa è dato dalla quantità di carica totale racchiusa all'interno della superficie. È importante anche il fatto che il campo \(\vec{E}\) e la superficie \(\mathrm{d}\vec{s}\), che è orientata, sono paralleli. Inoltre, siccome abbiamo un corpo omogeneo carico, dobbiamo usare la densità di carica nella formula infinitesima (che poi, una volta integrata ci darebbe la carica totale), da cui
\[\mathrm{d}\Phi = \vec{E}\cdot \mathrm{d}\vec{s} = \frac{\sigma}{\epsilon_0}\,\mathrm{d}s\,.\]
Ovvero, se vogliamo il campo, otteniamo
\[\vec{E}=\frac{\sigma}{\epsilon_0}\hat{n}\,.\]
Il potere delle punte (qualche volta chiamato effetto punta o potere disperdente delle punte) è un fenomeno che si osserva nei conduttori elettrici e che si lega direttamente al teorema di Coulomb.
Quando abbiamo un corpo con diversi raggi di curvatura, la carica tende a distribuirsi in modo che vi sia un campo elettrico più intenso in prossimità di zone più appuntite, come si vede in figura 2.
Fig. 2 - Schema dell'effetto punta.
Perché, però questo fenomeno è collegato al teorema di Coulomb? Se ci pensiamo, una maggior carica in una zona più appuntita vuol dire che anche la densità di carica sarà maggiore e quindi anche il campo elettrico.
Questo fenomeno spiega alcuni effetti fisici, come ad esempio il fatto che i fulmini tendono a colpire più facilmente strutture a guglia, come i parafulmini.
Il teorema di Coulomb afferma dato che un corpo conduttore di cui densità di carica superficiale σ, il campo elettrico vicino alla superficie è dato da E=σ/ε0 , dove ε0 è la costante dielettrica del vuoto.
How would you like to learn this content?
94% of StudySmarter users achieve better grades.
Sign up for free!94% of StudySmarter users achieve better grades.
Sign up for free!How would you like to learn this content?
Free fisica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Iscriviti per sottolineare e prendere appunti. É tutto gratis.