L'app all-in-one per gli studenti
4.8 • +11K recensioni
Più di 3 milioni di downloads
Free
Dalla famosa mela caduta in testa a Newton, alle stagioni, la legge di gravitazione universale regola tutti i fenomeni di attrazione gravitazionale tra due corpi nell'universo. Ma quale fu la rivelazione di Newton? Quali sono queste leggi che regolano l'universo? Scopriamolo insieme in questo articolo sulla legge di gravitazione universale!La legge di gravitazione universale è una fondamentale formulazione fisica dell'attrazione…
Explore our app and discover over 50 million learning materials for free.
Salva la spiegazione subito e leggila quando hai tempo libero.
SalvaLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDalla famosa mela caduta in testa a Newton, alle stagioni, la legge di gravitazione universale regola tutti i fenomeni di attrazione gravitazionale tra due corpi nell'universo. Ma quale fu la rivelazione di Newton? Quali sono queste leggi che regolano l'universo? Scopriamolo insieme in questo articolo sulla legge di gravitazione universale!
La legge di gravitazione universale è una fondamentale formulazione fisica dell'attrazione che due oggetti esercitano l'uno sull'altro.
Qualsiasi corpo nell'universo attrae ogni altro corpo con una forza proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato delle distanze che le separa.
È importante specificare che questa formulazione si riferisce a corpi puntiformi, è quindi valida quando possiamo considerare gli oggetti come un punto materiale. Tra i molti casi in cui questa approssimazione è applicabile, abbiamo tutti quelli in cui la massa del corpo può considerarsi concentrata nel centro di massa dell'oggetto, ad esempio, quando studiamo la dinamica dei corpi "da lontano", ovvero, quando ci interessano le posizioni relative degli oggetti o le loro masse, ma possiamo ignorare le caratteristiche geometriche dei corpi. Dove questa approssimazione non è applicabile, la legge di gravitazione universale si può considerare l'azione della forza gravitazionale come agente lungo la linea che unisce i due centri di massa.
Altra importante osservazione è il fatto che questa legge è universale, ovvero si applica a qualunque coppia di corpi, in qualunque punto dell'universo e a qualunque distanza. La forza di gravità ha un raggio di azione infinito, ma essendo dipendente dall'inverso del quadrato della distanza, decresce molto rapidamente con la distanza.
In alcune situazioni, la trattazione classica della gravità non è sufficiente e bisogna ricorrere alle equazioni della relatività generale di Einstein per descrivere l'attrazione gravitazionale dei corpi.
Sebbene Newton sia il personaggio che è passato alla storia per aver scoperto la legge di attrazione universale, diversi studiosi del suo tempo, tra cui Robert Hooke (lo stesso Hooke della legge che descrive la forza elastica), avevano dedotto una dipendenza dell'attrazione dei corpi che era proporzionale all'inverso del quadrato della distanza (la cosiddetta legge dell'inverso del quadrato).
Fu Isaac Newton, però, a dimostrare l'accuratezza di questa formula e soprattutto alla sua validità universale: infatti, Newton affermò che, anche se non è percepibile, anche una massa molto piccola attrae una massa enorme, solo che la forza che esercita su questa non è sufficiente a causarne il moto.
Nel 1687 Isaac Newton pubblica la sua trattazione della legge di gravitazione universale nella sua opera Philosophiæ Naturalis Principia Mathematica, cementando le sue scoperte nel tempo in uno dei trattati unanimamente considerati più importanti della storia della scienza.
Quando abbiamo due oggetti di massa \(m_1\) e \(m_2\) possiamo descrivere il modulo della forza di attrazione che l'uno esercita sull'altro attraverso la famosa equazione:
\[\boxed{F=G\,\frac{m_1 m_2}{r_{12}^2}\, .}\]
In questa equazione, \(m_1\) e \(m_2\) sono le masse dei due oggetti, \(r_{12}\) è la distanza che li separa e \(G\) è la costante di gravitazione universale.
Fig. 1 - Schema che descrive la forza di attrazione dovuta alla legge di gravitazione universale.
La costante di gravitazione universale \(G\) è sempre presente quando si tratta di formule di gravitazione. È una costante di proporzionalità che si è scoperto, sperimentalmente, valere circa \(6{,}67\times 10^{11}\, \mathrm{N\, m^2\,kg^{-2}}\). La prima misura di questa quantità è stata una conseguenza dell'esperimento di Cavendish del 1798. In questo esperimento, Cavendish aveva misurato la densità della Terra e solo successivamente dal risultato dei suoi esperimenti si è ricavato un valore per \(G\).
Se vogliamo tenere conto della direzione in cui agisce la forza, dobbiamo usare la forma vettoriale della legge di gravitazione universale. Per descrivere la forza esercitata dalla massa \(1\) sulla massa \(2\) possiamo usare la formula:
\[\boxed{\vec{F}_{12} = -G\,\frac{m_1\, m_2}{|\vec{r}_{12}|^2}\, \hat{r}_{12}}\]
dove \(G\) è la costante di gravitazione universale, \(m_\mathrm{1}\) e \(m_{2}\) le masse dei due oggetti che si attraggono, \(|\vec{r}_{12} |\) è il modulo del vettore che descrive la distanza tra i due oggetti e \(\hat{r}_{12}\) è il versore che ci dice la direzione della forza di attrazione.
Se vogliamo la forma vettoriale della legge di gravitazione universale, è fondamentale che il versore \(\hat{r}_\mathrm{12}\) sia orientato correttamente!
Si vede subito che \(\vec{F}_{12} = \vec{F}_{21}\), ovvero che la forza esercitata dalla massa \(1\) sulla massa \(2\) è uguale in modulo (perché nessuna delle quantità scalari cambia), ma opposta in verso a quella esercitata dalla massa \(2\) sulla massa \(1\). Questo è dovuto alla direzionalità data dal versore \(\hat{r}_\mathrm{12}\), che dà un vero e proprio verso alla nostra forza, motivo per cui è importante orientarlo correttamente.
Fig. 2 - Un esempio di applicazione della legge di gravitazione universale è la descrizione delle orbite e del moto dei pianeti attorno al Sole.
La legge di gravitazione universale afferma che qualsiasi corpo nell'universo attrae ogni altro corpo con una forza proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato delle distanze che le separa.
La costante di gravitazione universale G è il rapporto di proporzionalità presente nella legge di gravitazione universale e vale circa 6,67 N m2 kg-2.
degli utenti non supera il quiz di Legge di gravitazione universale! Tu lo passeresti?
INIZIA IL QUIZHow would you like to learn this content?
How would you like to learn this content?
Free fisica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Iscriviti per sottolineare e prendere appunti. É tutto gratis.
Salva le spiegazioni nel tuo spazio personalizzato e accedile ovunque e in qualsiasi momento
Iscriviti con l'e-mail Iscriviti con AppleIscrivendoti accetti Termini e Condizioni e Informativa sulla Privacy di StudySmarter.
Hai già un account? Login